
Two-Valued Coding Transmission of Multi-Rate
Quasi-Synchronous CDMA Signals Convolved by Real-Valued

Self-Orthogonal Finite-Length Sequences

Jiong LE
Yamaguchi University

2-16-1 Tokiwadai, Ube, Yamaguchi
Japan

j005we@yamaguchi-u.ac.jp

Yoshihiro TANADA
Yamaguchi University

2-16-1 Tokiwadai, Ube, Yamaguchi
Japan

tanada@yamaguchi-u.ac.jp

Abstract: Two-valued integrand codes are applied to the realization of the multi-rate quasi-synchronous CDMA
system using real-valued self-orthogonal finite-length sequences with zero correlation zone. Each user data of
multi-level and multi-interval and a common synchronizing sequence are convolved with the user sequence and
converted to two-valued integrand code signal. The signal passes through low pass filters in a transmitter and a
receiver and is changed to a real-valued signal. In the receiver, the desired data are detected by the correlation
processing with the respective code. This transmission system suppresses distortions on amplitude limitation and
quantization, and the interchannel and intersymbol interferences.
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1 Introduction
The next generation mobile communication system is
desired to transmit multimedia information at multi-
rate. Code division multiple access (CDMA) sys-
tem and orthogonal frequency division multiplexing
(OFDM) system are candidates for the next genera-
tion system[1],[2].

Basically, the OFDM system has the higher spec-
tral efficiency and the more tolerance for multi-path
than the CDMA system, but is caused to intercarrier
interferences leading to intersymbol in interferences
and interchannel interferences by peak distortion and
synchronization error.

Quasi-synchronous CDMA system using zero-
correlation-zone (ZCZ) sequences has the tolerance
for the synchronization error and the applicability
to improve the multi-path. Tanada developed the
real-valued self-orthogonal finite-length sequences of
zero correlation zone, which have zero sidelobe au-
tocorrelation functions except at both shift ends and
zero crosscorrelation functions in a limited shift
range[3],[4].

In this paper, two-valued integrand codes[5] are
applied to the realization of the multi-rate quasi-
synchronous CDMA system using real-vlaued self-
orthogonal finite-length sequences with zero correla-
tion zone. Numerical experiments show the suppres-
sion of the distortions on amplitude limitation and
quantization and the interchannel and intersymbol in-

terferences.

2 Orthogonal Set of Real-Valued
Finite-Length PN Sequences

This section summarizes an orthogonal set of real-
valued finite-length pseudonoise (PN) sequences to be
applied to a multi-rate quasi-synchronous CDMA sys-
tem. The sequence is called a self-orthogonal or shift-
orthogonal finite-length sequence, also called Huff-
man sequence, since its shifted sequences are orthog-
onal within a limited shift range.

An aperiodic autocorrelation function of the self-
orthogonal finite-length sequence {aM,�,i} of length
M , member � and ordinal i is given by

ρM,�,�,i′ =
1
M

M−1∑
i=0

aM,�,iaM,�,i−i′

=

⎧⎨
⎩

1 ; i′ = 0
εM−1 ; i′ = ±(M − 1)
0 ; elsewhere

(1)

where aM,�,i = 0 for i < 0 and i > M − 1, i′ is
shift, and εM−1 is a shift-end correlation value. The
sequence is replaced by an impulse train with weight
aM,�,i at every time-chip interval Tc

aM,�(t) =
M−1∑
i=0

aM,�,iδ(t − iTc) (2)
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and its Fourier transform

AM,�(f) =
M−1∑
i=0

aM,�,iZ
−i (3)

where δ(t) is Dirac’s delta function of time t, and Z =
ej2πfTc , and f is frequency.

For positive εM−1 and odd M , we have the spec-
trum solution of the sequence {aM,�,i} as

AM,�(f) =
√

MεM−1KM,�

×
M−1

2∏
m=1

{Z−2 + 2γM,�,mZ−1

× cos (2m−1)π
M−1

+ γ2
M,�,m} (4)

where γM,�,m = αM or βM , βM = 1/αM and

KM,� = 1/

M−1
2∏

m=0

γM,�,m (5)

αM =

⎛
⎝1 +

√
1 − 4|εM−1|2
2|εM−1|

⎞
⎠

1
M−1

. (6)

For negative ε′M−1 and odd M , we have the spec-
trum solution of the sequence {a′M,�,i} as

A′
M,�(f) = −

√
M |ε′M−1|K ′

M,�

×(Z−1 − γ′
M,�,0)(Z

−1 + γ′
M,�, M−1

2

)

×
M−3

2∏
m=1

{Z−2 − 2γ′
M,�,mZ−1

× cos 2mπ
M−1

+ γ′2
M,�,m} (7)

K ′
M,� = 1/{

√
γ′

M,�,0γ
′
M,�, M−1

2

M−3
2∏

m=1

γ′
M,�,m}, (8)

where the parameters with the mark ′ are defined as
similarly as those without the mark ′ .

We can synthesize the sequence {a′M0,λ,i} of
length M0 = 2M − 1 and shift-end negative value
ε′M0−1 from the sequence {aM,�,i} of odd length M
and shift-end positive value εM−1 and the sequence
{a′M,�′,i} of odd length M and shift-end negative
value ε′M−1 = −εM−1. From Eqs.(4) and (7), we ob-
tain the following spectrum of the sequence {a′M0,λ,i}
as

A′
M0,λ(f) = Ks · AM,�(f) · A′

M,�′(f) (9)

where α′
M0

= α′
M = αM and

Ks =
√

M0|ε′M0−1|/(M |εM−1|) (10)

ε′M0−1 = −|εM−1|2/(1 − 2|εM−1|2) . (11)

For the orthogonal set of the suppressed ampli-
tude distinct sequences {a′M,�′n,i−n} of M = 2ν+1+1,
ν = 3, 4, 5, · · · , we have the spectrum set

A′
M,�′n(f)Z−n

= −
√

M |ε′M−1|F (γ′2
M,λ0,0, Z

−2)G(γ′
M,λ0,1, Z

−1)

×
ν−1∏
m=2

G(γ′2m−1

M,�′n,m, Z−2m−1
)Z−n (12)

where
F (γ′

M,λ0,0, Z
−1)

= (Z−1 − γ′
M,λ0,0)(Z

−1 + γ′−1
M,λ0,0)

= Z−2 − (γ′
M,λ0,0 − γ′−1

M,λ0,0)Z
−1 − 1 , (13)

G(γ′
M,λ0,ν, Z

−1)

= Z−4 +
√

2(γ′
M,λ0,ν − γ′−1

M,λ0,ν)Z
−3

+(γ′
M,λ0,ν − γ′−1

M,λ0,ν)
2
Z−2

−
√

2(γ′
M,λ0,ν − γ′−1

M,λ0,ν)Z
−1 + 1 (14)

and n = 0, 1, · · · , M−1
8 − 1. The M−1

8 sequences
are orthogonal at the shift i′ = 0 mod M−1

8 . From
Eq.(12), for M = 33, we have the spectrum set for
the sequence set {a′33,�′0,i}, {a′33,�′1,i−1}, {a′33,�′2,i−2}
and {a′33,�′3,i−3},

A′
33,�′0

(f) = −
√

33|ε32|F (α2
33, Z

−2)

×G(α33, Z
−1)G(α2

33, Z
−2)

×G(α4
33, Z

−4) (15)

A′
33,�′1

(f)Z−1 = −
√

33|ε32|F (α2
33, Z

−2)

×G(α33, Z
−1)G(β2

33, Z
−2)

×G(α4
33, Z

−4)Z−1 (16)

A′
33,�′2

(f)Z−2 = −
√

33|ε32|F (α2
33, Z

−2)

×G(α33, Z
−1)G(α2

33, Z
−2)

×G(β4
33, Z

−4)Z−2 (17)

A′
33,�′3

(f)Z−3 = −
√

33|ε32|F (α2
33, Z

−2)

×G(α33, Z
−1)G(β2

33, Z
−2)

×G(β4
33, Z

−4)Z−3 (18)

where γM,λ0,0 = α33, γM,λ0,1 = α33, and the num-
ber n in A′

33,�′n
(f)Z−n, n = 0, 1, 2, 3, is defined by

the binary notation as n = (1 0)2 = 2 corresponding
to the reversed product G(β4

33, Z
−4)G(α2

33, Z
−2) in
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Figure 1: Composition of integrand code and its inte-
gration.
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Eq.(17). The set of {a′33,�′0,i} and {a′33,�′2,i−2} is or-

thogonla at the shifts i′ = 0 ± 1 mod 4 and is the se-
quence set with the zero correlation zone. Similarly,
we have a set of {a′65,�′0,i}, {a′65,�′2,i−2}, {a′65,�′4,i−4}
and {a′65,�′6,i−6} of length M = 65, which is orthogo-

nal at the shifts i′ = 0 ± 1 mod 8.

3 Two-Valued Integrand Codes for
Transmission of Real-Valued Sig-
nals

This section explains two-valued integrand codes for
the transmission of real-valued signals, because two-
valued signals are easily amplified and modulated.
Real-valued signals are converted to integer signals
by quantization. Fig.1 illustrates the composition of
a two-valued integrand code and its integration. One
chip time duration Tc is divided into 8 time slots and
the 8-point moving average is used instead of an inte-
gration. (a), (b), (c), (d), (e), (f), (g) and (h) in Fig.1
are the code components which produce the respective
front area 7, 5, 3, 1,−7,−5,−3 and −1 after the mov-
ing average, and Fig.1(i) is the code which produces
the front area 14 = 7 + 5 + 3 − 1 after the moving
average. Generally, for the time slots of even division
number nb, the value of the front area is given by

Nb,i =
nb/2−1∑

k=0

(2k + 1)bi,k (19)

Table 1: Positive values of two-valued integrand code
(n=16).

Value Code elements Value Code elements
0 + - + - - + - + 16 + + - + + - + +
1 - + + + - - - - 17 + + - + + + - -
2 - + + + - - - + 18 + + - + + + - +
3 + - - + + - + + 19 + + + - + + - -
4 + - - + + + - - 20 + + - + + + + -
5 + - - + + + - + 21 + + - + + + + +
6 + - + - + + - - 22 + + + - + + + -
7 + - + - + + - + 23 + + + - + + + +
8 + - + + - + - - 24 + + + + - + + -
9 + - + - + + + - 25 + + + + - + + +

10 + - + - + + + + 26 + + + + + - + -
11 + - + + - + + - 27 + + + + + - + +
12 + - + + - + + + 28 + + + + + + - -
13 + - + + + - + - 29 + + + + + + - +
14 + - + + + - + + 31 + + + + + + + -
15 + - + + + + - - 32 + + + + + + + +

where bi,k ∈ {−1,+1}. The two-valued integrand
code makes the values Nb,i/2 = 0,±1,±2, · · · ,
±n2

b/8 except a pair values ±(n2
b/8 − 2) that are

mapped into ±(n2
b/8 − 1) or ±(n2

b/8 − 3) so as to
reduce the error which decreases as the division num-
ber increases. The integrand codes pass through low
pass filters in a transmitter and a receiver, and become
sine-like pulse. Each integrand code has some com-
binations for a given value, and is selected to the opt-
inum combination so that every sine-like pulse might
resemble. Table 1 shows the positive values and the
optimized front half code elements of two-valued in-
tegrand codes with nb = 16 [5].

The waveform of the two-valued integrand code
for the maximum value is shown in Fig.2(a). At the
low pass filter output in the receiver, the waveform
is changed to a sine-like pulse in Fig.2(b) as well as
those of the other codes, where a waveform weighted
to wc(t) is regarded to be transmitted for each code
[5]. A signal constructed by the integrand code and a
sequence {aM,�,i} is equivalently expressed as

x(t) =
M−1∑
i=0

aM,�,i · wc(t − iTc) (20)

and a signal at the low pass filter output in the receiver
is given by

x̂(t) =
M−1∑
i=0

aM,�,i · ŵc(t − iTc) . (21)
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Figure 4: Model of Multi-Rate Quasi-Synchronous
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4 Multi-Rate Quasi-Synchronous
CDMA System

Fig.3 illustrates a quasi-synchronous CDMA system
by convolution between multi-level and multi-interval
data and real-valued self-orthogonal finite-length se-
quences with zero correlation zone −1 ≤ i′ ≤ 1,
and Fig.4 shows signal allotment of the system[6],[7].
Data of each user are arranged to those of multi-
level and multi-interval according to the demand for
data rate and data reliability. In Fig.4(a), the ar-
ranged data for user 0 and a synchronizing sequence
{w0aM,�,i} are allotted , where w0 is the weight for
the balance with the data power. A train of p-valued
data d0,k ∈ {−Vp−1, · · · ,−V2ν−1, · · · ,−V1, V1, · · · ,
V2ν−1, · · · , Vp−1}, ν = 1, 2, · · · , p/2, k = 0, 1, · · · ,
K0(N − 1) − 1 for user 0 is allotted at the front data
interval N(M − 1)Tc, where p-valued data with uni-
form distribution and average power 1 takes the value

V2ν−1 = (2ν − 1)
√

3/(p2 − 1) (22)

and K0 is the number of data for user 0 during
(M − 1)Tc. Convolving the signals of Fig.4(a) with
the sequence {a′M,�′0,i} of user 0 makes the signals of
Fig.4(c), where the signal x0d,i and its average power
P0d in the data interval are given by

x0d,i =
K0(N−1)−1∑

k=0

d0,ka
′
M,�′0,i−kμ (23)

P0d =
1

N(M − 1)

N(M−1)−1∑
i=0

x2
0d,i

∼= K0 (24)

and the synchronizing signal x0s,i and its average
power P0s in the synchronizing interval are given by

x0s,i =
M−1∑
i′=0

w0aM,�,i−i′+2(M−1)a
′
M,�′0,i′

=
w0

Ks
a′2M−1,λ′

0,i+2(M−1) (25)

P0s = w2
0/K

2
s . (26)

For user 1, the synchronizing sequence {w1aM,�,i}
and a train of q-valued data d1,k ∈ {−Vq−1, · · · ,
−V1, V1, · · · , Vq−1} , k = 0, 1, · · · ,K1(N − 1) − 1,
in Fig.4(b) make the signal in Fig.4(d) through the
convolution with {a′M,�′2,i−2}. The similar signals are
allotted for the other users. The heights of the data
signal x0d,i and the synchronizing signal x0s,i present
approximately Gaussian distributions. If we adjust the
signal power of each user n to σ2

nx = Pnd = Pns,
n = 0, 1, 2, · · · , then the distribution of the height x
of the signals xnd,i and xns,i, n = 0, 1, 2, · · · , is ap-
proximately represented by

qn(x) =
1√

2πσnx

e
− x2

2σ2
nx (27)

where σ2
nx = Kn. When |εM−1| = 1/M , we obtain

Ks
∼=

√
2/M and wn = Ks

√
Kn

∼=
√

2Kn/M . The
signal xn,i of user n is limited between the levels −r
and r, and quantized to the integer signal x̂n,i between
−A and A as follows:

x̂n,i
∼= 1

Knc
xn,i ; −r < xn,i < r (28)

x̂n,i =
{

A ; r ≤ xn,i

−A ; xn,i ≤ −r
(29)

Proceedings of the 7th WSEAS International Conference on Signal, Speech and Image Processing, Beijing, China, September 15-17, 2007      17



where r = KncA, and Knc is a coefficient so that
the power of the approximated signal Kncx̂n,i might
nearly equal the power of the amplitude-limited signal
in the quantization input. The height distribution of
the amplitude-limited real-valued signal x′n,i is given
by

qnr(x′) =

⎧⎨
⎩

qn(x′) ; −r < x < r

Q0δ̃(x′ − r) ; r ≤ x

Q0δ̃(x′ + r) ; x ≤ −r

(30)

where δ̃(x) is Dirac’s delta function of x and

Q0 =
∫ +∞

r
qn(x′)dx′ . (31)

The power of the amplitude-limited signal is calcu-
lated as

Pnr =
∫ +∞

−∞
x′2qnr(x′)dx′ , (32)

and an efficiency of signal transform is given by

η =
√

Pnr/σnx . (33)

The received signal x̂n,i is processed by a correla-
tor with the reference sequence {Knca

′
M,�′n,i−2n}, to

produce the signal x̃n,i(n = 0) shown in Fig.4(e),
which is analogous to the signal in Fig.4(a). The sig-
nal x̃n,i(n = 0) is processed by another correlator
with the reference sequence {aM,�,i} to give the syn-
chronizing pulse as shown in Fig.4(f). We can detect
the data d0,k in Fig.4(e) by the synchronizing pulse in
Fig.4(f). The multi-level and multi-interval data are
rearranged to the original data array.

The distortion based on amplitude limitation and
quantization is treated as an error of signal. The re-
lation between the integer signal x̂n,i and the real-
valued signal xn,i is expressed as

Kncx̂n,i = η xn,i + �xn,i (34)

where �xn,i is an error with mean value 0 and
variance σ2

nD from the real-valued signal xn,i and
�xn,i/Knc is the error at the quantizer output. When
there is no noise in the channel, the correlation output
between the integer data signal x̂nd,i and the reference
sequence {Knca

′
M,�′n,i−n} is given by

x̃nd,i′ =
1
M

∑
i

x̂nd,i+i′Knca
′
M,�′n,i−n

= η

Kn(N−1)−1∑
k=0

dn,k · ρM,�′n,�′n,i′−k

+
1
M

M−1∑
i=0

�xnd,i+i′ · a′M,�′n,i−n . (35)
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Figure 5: Signals in the experimental system.

In Eq.(35), the first term provides the output data sig-
nal power η2, and the second term provides the out-
put distortion σ2

nD/M . The input data signal power is
given by

Sin = E[(x̂nd,i)2] = η2Kn/K2
nc . (36)

where E[ · ] denotes expectation.
If there is a white Gaussian noise with power

Nin = σ2
in in the channel, the input and the output

signal-to-noise ratio for V2ν−1are given by

SNRin =
Sin

Nin
=

η2Kn

K2
ncσ

2
in

(37)

SNRout,2ν−1 =
Sout,2ν−1

Nout

=
η2 · V 2

2ν−1

σ2
nD/M + K2

ncσ
2
in/M

. (38)

5 Numerical Experiments
We examine the proposed CDMA system using a set
of sequences with the zero correlation zone −1 ≤
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Figure 7: SNR improvement by correlation process-
ing. (a) Moving average of Tc/3. (b) Moving average
of Tc.

i′ ≤ 1 by numerical experiments, where M = 65,
N = 4, Kn = 1, 2, · · · , 8 , p = 2, 4 and μ =
(M − 1)/8 = 8. We use two-valued integrand codes
with nb = 16 (A = 32) and the orthogonal sequences
{a′65,�′n,i−2n;n = 0, 1, 2, 3}, ε′64 = −1/65, and
the common sequence {a65,�,i}, ε64 = 1/65, where
|a′65,�′n,i|max

∼= 2.7463, |ρ65,�n,�′n,i′ | max
∼= 0.5268,

|a65,�,i|max
∼= 1.9979.

A low pass filter in the transmitter is replaced by
the moving averager of Tc/3 or Tc, and a low pass fil-
ter in the receiver is by the 6-stage connection of the
moving averager of Tc/3. Fig.5 shows signals of the
transmitter and receiver on user 0 in the experimen-
tal CDMA system, where K0 = 8, p = 2, and the
moving averager of Tc is used for the low pass filter
in the transmitter, and there exists no additive noise.
Figs.5(a), (b), (c), (d), (e), and (f) show a train of
data and synchronizing sequence, its convolved sig-
nal, the integrand coded signal, the correlator input
signal, the correlator output signal for data and that
for synchronizing pulse, respectively. Figs.5(g) and
(h) show the correlator output signal for data and that
for synchronizing pulse when the signal of user 1 is
mixed. Fig.6(a) shows the correlator data ouput levels
for p = 2 when the moving average durations are Tc/3
and Tc in the transmitter. Fig.6(b) shows the correla-
tor data output levels for p = 4 when the moving aver-
age duration is Tc/3 in the transmitter. Figs.7(a) and
(b) show the SNR improvements for p = 4 when the
moving average durations are Tc/3 and Tc in the trans-
mitter. These results explain that the higher cut-off

low pass filter in the transmitter gives the output data
with the higher level and the narrower pulse width but
gives the detected waveform with the more distortion.

6 Conclusion
Two-valued integrand codes are applied to the real-
ization of the multi-rate quasi-synchronous CDMA
system using real-valued self-orthogonal finite-length
sequences with zero correlation zone. The proposed
system is useful for the multimedia data transmission
for the demand of data rate and data reliability.
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