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Abstract: - As electronic techniques is continuous improved rapidly cameras or video camcorders used for image retrieval 

technology and development become digitalized. The color of the photographs would look very different due to differences 

in light projection illumination when we take a picture. Human eyes are able to automatically adjust the color when the 

illuminations of the light source vary. However, the most frequently used image sensor, charge coupled device, CCD device 

can not correct the color as human eyes. This paper presents a hardware-software co-design method based on Lam’s 

automatic white balance algorithm, which combines both Gray World Assumption and Perfect Reflector Assumption 

algorithms [1]. The execution steps of Lam’s algorithm were divided into three stages. The hardware-software co-design 

and analysis for each stage was realized. Three factors including processing time, Slices and DSP48s of hardware resources 

were used to formulate the objective function, which was employed to evaluate the system performance and hardware 

resource cost. Experimental results shows suitable partitions of hardware-software co-designs were achieved. An 

embedded processor, MicroBlaze developed by Xilinx and a floating point processor were used to deal with the software 

part of the algorithm. The hardware part of the algorithm was implemented using an IP-based method. It is able to reduce 

the memory and CPU resources of PC as well as to have the properties of easy modification and function expansion by 

using such system on programmable chip architecture. 

 

Key-Words: - Charge-coupled device, automatic white balance, hardware-software co-design, embedded processor, 

system on a programmable chip 
 

1   Introduction 
Gray World Assumption (GWA) [13] and Perfect 

Reflector Assumption (PRA) [14] are two common 

methods used to realize automatic white balance 

algorithms. GWA can offer a better effect for photographs 

with rich color environment and background due to its 

characteristics. However, processed images may have an 

undesirable shift in the entire color range when the 

acquired images are with a predominant color. On the 

contrary, the images with a predominant color can be 

processed without a cast as people can see if PRA is 

applied. However, PRA may not correctly deal with the 

automatic white balance of images with multicolor. The 

processed images may have an undesirable shift in the 

entire color range. In 2005, Lam proposed an automatic 

white balance algorithm which combines both GWA and 

PRA. The algorithm can deal with automatic white balance 

of images with both multicolor and a predominant color 

correctly [1]. 
    Three approaches may be used to construct image 

retrieval platforms dealing with white balance algorithms. 

The first approach contains storing acquired images into 

memory and executing specific software program in 

computer hardware resources to process the images. 

Operating systems and application programs as well as 

some memory and CPU resources are required when this 

method is applied. The second approach contains some 

additional image processing ASICs on the image retrieval 

platforms. Such ASICs can be applied to deal with images 

processes. However, the image processing functions is 

limited by their specifications. The third approach is to 

construct image retrieval platforms using SoPC. This 

method usually contains field-programmable gate array 

(FPGA) chips and embedded processors with Intellectual 

Property (IP) based hardware designs. This design 

methodology may not consume large amount of memory 

and CPU resources of PC as well as to have the properties 

of easy modification and function expansion, which can 

not be achieved if pure hardware architectures are used. 

Some ICs may be replaced by such SoPC architecture to 

contain their functions and reduce the difficulty of the PCB 

designs [2]. 
In this research, the Xilinx’s ML402-Virtex-SX35 

development board was used. The embedded processor is 

using MicroBlaze Soft Core developed by Xilinx. A 

floating point implementation was used to deal with the 

software part of Lam’s algorithm. The hardware part of 
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Lam’s algorithm was implemented using an IP-based 

design. 
The paper is organized as follows: In Section 2, 

we review the automatic white balance algorithms. 

Then, in Section 3, we describe our implementing 

methods for Lam’s algorithm, including 

hardware-software partitioning and the evaluation of 

the cost functions. In Section 4, experimental results 

are presented to show the implementations and a 

brief comparison is discussed. Finally, a conclusion 

is given in Section 5. 

 

2  Automatic white balance algorithms 

Within this paper RI
^

, GI
^

, and BI
^

 are used to 

denote the red, green, and blue values after image 

processing as well as RI , GI , and BI  are used to 

denote the red, green, and blue values before image 

processing, respectively. 

 

2.1 Gray Word Assumption 
Currently GWA algorithm is one of the most 

frequently used automatic white balance algorithms. 

The algorithm is based on the assumption, “all 

photographs acquired by cameras are colorful 

images.”. In other words, the occurrence probabilities 

of red, green, and blue pixels of a picture are the 

same. The gray level of a color is composed from the 

averages of red, green, and blue colors. For real 

situations the shooting pictures are usually with 

colorful enough. It matches the assumption of GWA. 

Therefore, it is necessary to adjust each average of 

red, green, and blue colors to be the same when we 

use GWA algorithm. An image consists of brightness 

and chromaticity information. Human eyes are more 

strongly sensitive to the brightness than to the 

chromaticity of an image. Because 60 percent 

brightness information is composed from green 

colors, therefore, green is the color which can be used 

to represent the brightness information of an image. 

),(),(
^

yxIKyxI RRR =   (1) 

),(),(
^

yxIKyxI BBB =  (2) 

mn

yxI

mn

yxI

R

G
K

m

i

n

j

R

m

i

n

j

G

avg

avg
R

∑∑

∑∑

= =

= =

==

0 0

0 0

),(

),(

 (3) 

Eqs (1) and (3) show the main computations of the 

red channel [3]. The similar computation is shown in 

Eq (2) can be used to obtain the blue value for the 

blue channel [3]. The advantage of the GWA 

algorithm is to have a better recovery of the original 

appearance of the scene when the input images are 

colorful. However, processed images may have an 

undesirable shift in the entire color range when the 

acquired images are with a predominant color. 

 

2.2 Perfect Reflector Assumption 
PRA is another famous algorithm to deal with 

automatic white balance. Let us discuss the 

relationship between lights and object colors first. 

Objects may not show colors themselves. However, 

their colors can be shown through different 

wavelengths of the radiations from the illumination 

in absorption, reflection, or transmission. We could 

not see any object colors if there is no radiation from 

the illumination. On the other hand, the object color 

is white if all the radiations are reflected. Therefore, 

white color objects or regions are called as perfect 

reflectors. The PRA theory assumes that perfect 

reflectors can be used as the reference value of a 

white color in dealing with an acquired image. The 

red, green, and blue for a white color object inside 

any color temperature image could be the maximum 

values. To achieve automatic white balance of 

images the perfect reflector may be used as a 

reference to correct other colors. 
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Eqs (4) and (6) show the main computations of the 

red channel. The similar computation shown in Eq 

(5) can be used to obtain the blue value for the blue 

channel [3]. The advantage of PRA algorithm is to 

have a better recovery of the original appearance of 

the scene when the input images are with a 

predominant color. However, processed images may 

have an undesirable shift in the entire color range 

when the acquired images are with multicolor. 

 

2.3 2005 Lam’s algorithm 
Both PRA and GWA algorithms still have the 

disadvantages as mentioned above. Lam proposed an 

automatic white balance method which combines above 

two algorithms in 2005. In this paper the method is called 

as Lam algorithm. Lam presented two Eqs (7) and (8) to 

deal with automatic white balances. The main 

computations for the coefficients of the red channel are 

shown in Eqs (9) - (12). The similar computation shown in 
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Eq (8) can be used to obtain the blue coefficients for the 

blue channel [1]. 
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Equations contain the processing of the squares of 

pixels. Therefore, the processed images have the 

property of enhancing the contrast of images. As with 

PRA and GWA, the values of the green channel are 

kept unchanged. Only the values of the red and blue 

channels are adjusted. Lam’s algorithm has the 

advantages of both GWA and PRA. When input 

images with multicolor the processed images can 

have the effect as well as the GWA method. When 

input images with a predominant color the processed 

images can not have the effect as well as the PRA 

method. But it removes the saturation condition 

during the GWA algorithm processing. Therefore, 

Lam’s algorithm is better than GWA and PRA to be a 

suitable method used for dealing with automatic 

white balances of any different images. 

 

3  Hardware-software co-design 
The execution steps of Lam’s algorithm were divided 

into three stages. The first stage is the pre-processing 

of the Lam’s algorithm. It is to obtain the required 

parameters of the computations for Lam’s algorithm. 

The second stage is to obtain the solutions of the 

equations of Lam’s algorithm. There two common 

methods to be applied to obtain the solutions. One is 

by Gauss Elimination. Another is by Cramer’s Rule. 

The third stage is to deal with the automatic white 

balance computations for each pixel. The 

hardware-software co-design and analysis for each 

stage was realized and evaluated. The partitions of 

these three stages are shown in Fig. 1. When the 

computations of the parameters for the first stage 

were implemented using hardware each pixel needs 5 

adders, 2 multipliers and 3 comparators. 
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Fig. 1: Three stages of Lam’s algorithm. 

 
The hardware implementation of the red 

channel of the data-path model is shown in Fig. 2. 

The same hardware was also used for the blue 

channel. The similar hardware was used for the green 

channel. There was no summation of multipliers 

inside this similar hardware. 

 

 

Fig. 2: The hardware model for obtaining the red 

channel parameters (stage 1). 
 

The computation of the second stage is to obtain 

the solutions of the linear equations with two 

unknown. Four methods were discussed in this paper. 

They are Guass Elimination Software, Guass 

Elimination Hardware, Cramer’s Rule Software, and 

Cramer’s Rule Hardware. Floating point 

computations are required for the second and the 

third stages. Therefore, the term computation is for 

the floating point computation. The employed 

computation blocks were floating point operators [7]. 
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When Guass Elimination Software was applied 

6 dividers, 6 multipliers, and 6 sub-tractors were 

required for a frame. The hardware implementation 

of the red channel of the data-path model is shown in 

Fig. 3. The same hardware was also used for the blue 

channel. When Cramer’s Rule Software was applied 

12 multipliers, 6 sub-tractors, and 4 dividers were 

required for a frame. The hardware implementation 

of the red channel of the data-path model is shown in 

Fig. 4. The same hardware was also used for the blue 

channel. 

The computations of the parameters for the third 

stage is write back the pixel data when the software 

implementation were applied. 3 multipliers and 1 

adder were required for a pixel. The hardware 

implementation of the red channel of the data-path 

model is shown in Fig. 5. The same hardware was 

also used for the blue channel. 

 

Fig. 3: The hardware implementation of Guass   

Elimination for the red channel parameters 

Ru  and Rv  (stage 2). 

 

Fig. 4: The hardware implementation of Cramer’s 

Rule for the red channel parameters Ru  and Rv  

(stage 2). 

 

 
Fig. 5: The data-path model of writing back the pixel 

data. 

 

3.1  Sixteen hardware-software partitions 
There sixteen partitions were used to implement 

SOPC to deal with the Lam’s algorithm. Three 

factors including processing times, usages of Slices 

and DSP48 of hardware resources were used to 

formulate a cost function, which was employed to 

evaluate the system performance and hardware 

resource cost. Each Slice contains a set of D-FlipFlop 

and 4-bit programmable logic. Table 1 shows these 

sixteen hardware-software partitions. 

 
Table 1. Sixteen hardware-software partitions. 

 Stage1 Stage2 Stage3 

Case1 SW Gauss Elimination SW SW 

Case2 SW Gauss Elimination SW HW 

Case3 SW Gauss Elimination HW SW 

Case4 SW Gauss Elimination HW HW 

Case5 SW Cramer’s Rule SW SW 

Case6 SW Cramer’s Rule SW HW 

Case7 SW Cramer’s Rule HW SW 

Case8 SW Cramer’s Rule HW HW 

Case9 HW Gauss Elimination SW SW 

Case10 HW Gauss Elimination SW HW 

Case11 HW Gauss Elimination HW SW 

Case12 HW Gauss Elimination HW HW 

Case13 HW Cramer’s Rule SW SW 

Case14 HW Cramer’s Rule SW HW 

Case15 HW Cramer’s Rule HW SW 

Case16 HW Cramer’s Rule HW HW 

 
3.2  Software operations using floating-point 

operation units 
The employed algorithm contains floating point 

operations. Micro-Blaze embedded processor 4.0 

version [8] can support additional floating point 
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operation units. Additions, subtractions, 

multiplications, and divisions of the floating point 

operations can speed-up from 15 to 266 times [9]. In 

this paper, MicroBlaze embedded processor 4.0 

version with floating point operation units were used 

for the software implementation. 

 
3.3   Hardware operations using floating point 

operators 
The software for realizing the design and synthesis of the 

partitioned hardware is using Xilinx Integrated Software 

Environment 7.1 iSP2. The floating point operators used 

for the second and the third stages are constructed using 

Floating Point Operator v1.0 [7] generated by Xilinx 

CoreGenerator. The width of the buses, data bit 

definitions, and operator types of the floating point 

operations can be defined using adjusting the setup of 

CoreGenerator. In this paper the format of the floating 

point operations was set as single precision of IEEE-754 

standard. One bit is used as the sign bit. 8 bits are used as 

the exponent. 23 bits are used as the mantissa. 

 

3.4   Defining an objective function 
An objective function [4] which was used to evaluate 

the system is shown in Eq (13). Two factors were 

considered in our systems. They are processing times 

and usages of hardware resources. To evaluate the 

usages of hardware resources the usages of hardware 

resources are further divided into the usages of Slices 

and the usages of DSP48 slices (DSP48s). To realize 

the objective function and calculate it for various 

conditions of the partitions time, slices and DSP48s 

denote the maximum values of the sixteen partitions, 

respectively. Let timereal , slicesreal, and DSP48sreal 
denote the actual value for each partition, 

respectively. 

After computing the sixteen evaluation values 

can be obtained from the Objective Function. If the 

evaluation value is closed to 1 it means that the 

system can have the expected performance with a 

faster execution time, a smaller amount of Slices, and 

a smaller amount of DSP48s. The parameters, α , β , 

and γ  of Eq (13) are used to achieve a balance of the 

execution efficiency and the hardware resources. 

They represent the specified weights of the execution 

time, the usage of Slices, and the usage of DSP48s. In 

this research, we set 
2

1
=α ,

4

1
=β , and 

4

1
=γ . 

The applications of the automatic white balance 

algorithms of digital images are very wide, such as 

digital cameras, image capturing cards, smart 

cameras, etc. For different performance requirements 

the three parameters of the objective function can be 

modified to meet the desired constraints. 

Objective Function

*

*

48 48
*

48

real

real

real

time time

time

slices slices

slices

DSP s DSP s

DSP s

α

β

γ

−
=

−
+

−
+

  (13) 

To enable readers understanding the objective 

function, an example is used to explain it. First the 

weight ratio of the processing time and hardware 

resources were set to be 1:1 ( see Eq (14)). It was not 

only for obtaining execution efficiency but also for 

reducing hardware resources. Then the sum of the 

weights were set to be 1 (see Eq (15)). Similarly, it is 

to achieve that the weights of Slices and DSP48s of 

the hardware are the same. That is, 
4

1
=β  and 

4

1
=γ . 

1:1)(: =+ γβα         (14)  

Let 1=++ γβα         (15)  

2

1
)(,

2

1
=+==> γβα  

Alternatively, we define a cost function to show the 

increasing percentage ratio of the execution 

efficiency and the cost. It is shown in Eq (16). 

 

real

real real

Cost Function

execution efficiency increment%
=

hardware resource increment%

time-time

time=
slices-slices 1 DSP48s-DSP48s 1

1-( * + * )
slices 2 DSP48s 2

 

                                                                                       (16) 

 

In the cost function the numerator denotes the 

efficiency improvement variation of the execution 

time. The denominator denotes the cost increment 

caused by the usage increment of the hardware 

resources (Slices and DSP48 slices). The greater ratio 

values mean that the design has shorter execution 

time and lower cost. 
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4   Experimental Results 

A typical system architecture was used to implement the 

system for this research [5]. MicroBlaze is a Soft Core 

processor developed by Xilinx. The DDR SDRAM 

Controller is an external memory controller. The On Chip 

Peripheral (OPB) is a peripheral bus. The IP Interface is a 

bus interface. The CameraLink Deserial is an input 

interface for digital cameras. The Region of Interesting 

(ROI) denotes the some region processing circuits. The 

Auto White Balance Stage1 HW and Stage3 HW denote 

the designed circuits for the partition for Case14. 

The flow for fetching images is shown in Fig. 6. 

The first step is that the SVS282 camera sent out 

Bayer arrangement CCD sensed images [10] to the 

Low Voltage Differential Signal (LVDS) pin [11] of 

the ML402 development board by CameraLink 

interface. The second step is that the Virtex4-SX35 

FPGA image chip executes the function of the 

Region of Interesting (ROI) and stores the fetched 

images into the Double Data Rate Synchronous 

Dynamic Random Access Memory (DDR SDRAM) 

of the development board to finish the image fetching 

processing. The third step is to execute the automatic 

white balance algorithms. Due to the automatic white 

balance processed images are still CFA color patterns 

[12]. For the verification and the convenience of 

observations, the fourth step is to execute the pixel 

generation of the differences of adjacent pixels using 

MicroBlaze. Various software-hardware partitioning 

implementations were downloaded into FPGA by the 

Joint Test Action Group (JTAG) interface and 

estimated experimental results are shown in this 

section. To verify the experimental results the images 

were transmitted to the computer via the Universal 

Asynchronous Receiver/Transmitter (UART) 

interface. Then a Visual Basic application program 

was used to receive the automatic white balance 

processed images at the computer end. They were 

stored into the files using Bitmap (BMP) format. The 

whole experimental environment is shown as Fig. 7. 

 

 
 

Fig. 6: The flow of fetching images 

 

 

Fig. 7: The system connections and the whole 

experimental environment of fetching 

images 
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Fig. 8: Execution time comparisons of 16 different 

partitions and the pure software 

implementation case (Case1) 
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Fig. 9: Comparisons of hardware resource Slices usages of 

16 different partitions and the pure software 

implementation case (Case1) 

 

In the experiments the execution time was 

counted for the 320 x 240 resolution images. The 

experimental statistics of execution times, Slices, and 

DSP48s are shown in Figures 8, 9, 9, and 10 

respectively. The evaluation values of objective 

function and the cost function are shown in Table 2 

and Fig. 11. 
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Table 2: Objective Function and Cost Function 
  Stage 

1 
Stage 

2 

Stage 

3 

Objective 

Function 

Cost 

Function 

Case1 SW Gauss Elimination SW SW 0.4267 0.0001 
Case2 SW Gauss Elimination SW HW 0.7384 2.3018 
Case3 SW Gauss Elimination HW SW 0.2169 0  
Case4 SW Gauss Elimination HW HW 0.5286 1.0728 
Case5 SW Cramer’s Rule SW SW 0.4267 0.0001 
Case6 SW Cramer’s Rule SW HW 0.7384 2.3018 
Case7 SW Cramer’s Rule HW SW 0.1266 0  
Case8 SW Cramer’s Rule HW HW 0.4384 0.8724 
Case9 HW Gauss Elimination SW SW 0.4248 0.4405 
Case10 HW Gauss Elimination SW HW 0.7365 1.9679 
Case11 HW Gauss Elimination HW SW 0.2149 0.1720 
Case12 HW Gauss Elimination HW HW 0.5999 1.2624 
Case13 HW Cramer’s Rule SW SW 0.4248 0.4405 
Case14 HW Cramer’s Rule SW HW 0.7365 1.9679 
Case15 HW Cramer’s Rule HW SW 0.1247 0.1363 
Case16 HW Cramer’s Rule HW HW 0.5097 1.0206 

 

As shown evaluation of the objective function, 

Case6 and Case2 both were rank one. Case10 and 

Case14 both were rank two. Both Case2 and Case6 

implemented the computations of the first stage using 

the software. They also implemented the 

computations of the second stage using the software. 

They implemented the computations of the third 

stage using the hardware. However, they used 

different methods for the solutions in the second 

stage. Their performance is able to deal with a 64 M 

pixels picture per second. It is equal to have an 800 x 

800 resolution. The difference of the evaluations 

between the best case and Case10 and Case14 is only 

0.0021. Their performance is able to deal with a 2.5 

M pixels picture per second. It is equal to have a 1580 

x 1580 resolution. The difference between Case10 

and Case14 is using different methods for the 

solutions in the second stage. Case14 is 0.49 μ s 

faster than Case10 under the same amount of 

hardware resource usages. For the requirements of 

several M pixels digital picture resolutions we 

decided to take Case14 which is able to deal with a 

2.5 M pixels picture per second as well as have a 

balance between performance and hardware 

resources. The system architecture is shown in Fig. 

12. 

 

Table 3: Total execution time 
  Stage 1 Stage 

2 

Stage  

3 

Total 

execution 

Time (μ s) 

Case1 SW Gauss Elimination SW SW 782701.244 
Case2 SW Gauss Elimination SW HW 122701.244 
Case3 SW Gauss Elimination HW SW 782709.260 
Case4 SW Gauss Elimination HW HW 122709.250 
Case5 SW Cramer’s Rule SW SW 782700.747 
Case6 SW Cramer’s Rule SW HW 122700.747 
Case7 SW Cramer’s Rule HW SW 782706.500 
Case8 SW Cramer’s Rule HW HW 122706.500 
Case9 HW Gauss Elimination SW SW 690001.244 
Case10 HW Gauss Elimination SW HW 30001.244 
Case11 HW Gauss Elimination HW SW 690009.260 
Case12 HW Gauss Elimination HW HW  30009.250 
Case13 HW Cramer’s Rule SW SW 690000.747 
Case14 HW Cramer’s Rule SW HW  30000.747 
Case15 HW Cramer’s Rule HW SW 690006.500 
Case16 HW Cramer’s Rule HW HW  30006.500 

 
Table 4: Total usages of hardware resources (Slices) 

  Stage 

1 

Stage  

2 

Stage 

3 

Total 

Slices 

Case1 SW Gauss Elimination SW SW  678 
Case2 SW Gauss Elimination SW HW 1103 
Case3 SW Gauss Elimination HW SW 1944 
Case4 SW Gauss Elimination HW HW 2369 
Case5 SW Cramer’s Rule SW SW  678 
Case6 SW Cramer’s Rule SW HW 1103 
Case7 SW Cramer’s Rule HW SW 2152 
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Case8 SW Cramer’s Rule HW HW 2577 
Case9 HW Gauss Elimination SW SW 1288 
Case10 HW Gauss Elimination SW HW 1713 
Case11 HW Gauss Elimination HW SW 2554 
Case12 HW Gauss Elimination HW HW 2301 
Case13 HW Cramer’s Rule SW SW 1288 
Case14 HW Cramer’s Rule SW HW 1713 
Case15 HW Cramer’s Rule HW SW 2762 
Case16 HW Cramer’s Rule HW HW 2509 

As shown in Table 3 the execution time of 

Case14 is 30000.747 μ s. It is 26 times faster than 

the pure software case (782701.244 μ s). A floating 
point unit (FPU) is about 678 Slices. As shown in 

Table 4 the hardware resources of several cases are 

equal to 4 times of a FPU. 

For parallel processing the second stage data the 

hardware implementation of the stage required 1266 

Slices if Gauss elimination method is applied. 

Alternatively, it required 1474 Slices if Cramer’s rule 

is applied. The Slice usage of both hardware is over 2 

times of a FPU. The hardware execution time of 

Gauss elimination method was about 9.26 μ s . The 
hardware execution time of Cramer’s rule was about 

6.5 μ s . 
From the evaluations of the objective function 

the sequence of the optimal solutions is Case2 = 

Case6 > Case14 = Case10 > Case12 > Case4 > 

Case16 > Case8 > Case1 = Case5 > Case9 = Case13 

> Case3 > Case11 > Case7 > Case15. From the 

evaluations of the cost function the sequence of the 

optimal solutions is Case2 = Case6 > Case14 = 

Case10 > Case12 > Case4 > Case16 > Case8 > Case9 

= Case13 > Case11 > Case15 > Case1 = Case5 > 

Case3 = Case7. View these two evaluations the 

sequences are very similar. The difference is that the 

cost function evaluations of Case1, Case5, Case3, 

and Case7 are close to the worst case. Due to the 

execution efficiency increment percentage approach 

to 0 they are at the last four places in the sequence. 

On the other hand, due to the objective function is 

with the linear accumulation property and these four 

cases consumed less hardware resource they are not 

at the last four places in the objective function 

evaluation sequence. Due to the objective function is 

with the linear accumulation property it is able to 

show the system performance at the execution 

efficiency increment and the hardware economy. The 

optimal solution of the objective function evaluation 

is also with the optimal ratio of efficiency and cost. 
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Fig. 11 : Evaluations 

 

For the experiment Philips PL18114 table lamp and 

PL-L827 fluorescent tube were used. As shown in 

Fig. 13 Color boards, dolls, thermos mugs were put 

inside the images to view the situations of processed 

images by Lam’s automatic white balance algorithm. 

Fig. 12: The system architecture. 

 
Fig. 13: 2700° K illuminant experiments. (A) Color 

board, (B) original images, and (C) 

automatic balance processed images. 

 

Color temperature 2700° K was used for the 

experiment. Fig. 13 (A) shows a standard color 
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board. Fig. 13 (B) shows the original fetched images. 

Fig. 13 (C) shows the images which were processed 

by the automatic white balance SoPC. It is clearly 

shown that the color board images in Fig. 13 (C) are 

close to the color board shown in Fig 13 (A). 

Compare colors of gray scales at the fourth rows of 

color boards shown in Fig. 13 (A), (B), and (C). The 

color of gray scale at the fourth row of the color 

board shown in Fig. 13 (B) biased to yellow. This is a 

feature of images with low color temperature. 

After we computed the cost function of Eq (13) 

using the actual execution times and the usages of 

Slices and DSP48s for the sixteen partitions. The 

evaluation values of sixteen cases were obtained. 

They are shown in Table 5 and Fig. 11. 

 

 

Table 5: The cost function evaluations 

  
Stage 

1 

Stage  

2 

Stage 

3 
Evaluations 

Case1 SW Gauss Elimination SW SW 0.4264 
Case2 SW Gauss Elimination SW HW 0.7486 
Case3 SW Gauss Elimination HW SW 0.2143 
Case4 SW Gauss Elimination HW HW 0.5365 
Case5 SW Cramer’s Rule SW SW 0.4264 
Case6 SW Cramer’s Rule SW HW 0.7486 
Case7 SW Cramer’s Rule HW SW 0.1223 
Case8 SW Cramer’s Rule HW HW 0.4445 
Case9 HW Gauss Elimination SW SW 0.4243 
Case10 HW Gauss Elimination SW HW 0.7465 
Case11 HW Gauss Elimination HW SW 0.2122 
Case12 HW Gauss Elimination HW HW 0.5957 
Case13 HW Cramer’s Rule SW SW 0.4243 
Case14 HW Cramer’s Rule SW HW 0.7465 
Case15 HW Cramer’s Rule HW SW 0.1202 
Case16 HW Cramer’s Rule HW HW 0.5037 
 

5   Conclusion 
In this paper, a hardware-software co-design 

methodology was used to implement automatic white 

balance functions, which is based on FPGA chips and 

a SoPC architecture. The hardware design using an 

IP-based method with an embedded processor is able 

to reduce the memory and CPU resources of PC as 

well as to have the properties of easy modification 

and function expansion.  

The chosen automatic white balance algorithm 

which combines and is based on the gray word 

assumption and the perfect reflector assumption 

theories to achieve the automatic white balance 

correction for acquired images. It causes that the 

color temperature of images is the same as human 

eyes. By the automatic white balance algorithm it is 

able to automatically adjust the internal image color. 

It is able to show the correct color as human eyes 

when the illumination of the light source vary. 

We used the hardware-software co-design 

methodology to implement the automatic white 

balance algorithm on a SoPC. An objective function 

was used to evaluate sixteen hardware-software 

partition cases and to achieve a balance between 

execution performance and hardware resources. The 

performance of the partitioned result was 26 times 

faster than the pure software implementations. It is 

able to deal with a 2.5 M pixels picture per second. 

The amount of the additional hardware resources is 4 

times of a FPU. The system architecture has the 

properties of easy modification and function 

expansion. It shows the advantage of the SoPC 

design. As FPGA process techniques is continuous 

improved, the system may have a better performance 

if energy consumptions can be further considered 

together. 
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