
A Novel Hardware-Software Co-Design for Automatic White Balance

CHIN-HSING CHEN
1
, SUN-YEN TAN

2
, WEN-TZENG HUANG

2

1
 Department of Management Information Systems

Central Taiwan University of Science and Technology

Taichung, Taiwan, R.O.C.

chchen@ctust.edu.tw

2
 Department of Electronic Engineering

National Taipei University of Technology

Taipei, Taiwan, R.O.C.

 {sytan, wthuang}@ntut.edu.tw

http://www.ntut.edu.tw/~wthuang

Abstract: - As electronic techniques is continuous improved rapidly cameras or video camcorders used for image retrieval

technology and development become digitalized. The color of the photographs would look very different due to differences

in light projection illumination when we take a picture. Human eyes are able to automatically adjust the color when the

illuminations of the light source vary. However, the most frequently used image sensor, charge coupled device, CCD device

can not correct the color as human eyes. This paper presents a hardware-software co-design method based on Lam’s

automatic white balance algorithm, which combines both Gray World Assumption and Perfect Reflector Assumption

algorithms [1]. The execution steps of Lam’s algorithm were divided into three stages. The hardware-software co-design

and analysis for each stage was realized. Three factors including processing time, Slices and DSP48s of hardware resources

were used to formulate the objective function, which was employed to evaluate the system performance and hardware

resource cost. Experimental results shows suitable partitions of hardware-software co-designs were achieved. An

embedded processor, MicroBlaze developed by Xilinx and a floating point processor were used to deal with the software

part of the algorithm. The hardware part of the algorithm was implemented using an IP-based method. It is able to reduce

the memory and CPU resources of PC as well as to have the properties of easy modification and function expansion by

using such system on programmable chip architecture.

Key-Words: - Charge-coupled device, automatic white balance, hardware-software co-design, embedded processor,

system on a programmable chip

1 Introduction
Gray World Assumption (GWA) [13] and Perfect

Reflector Assumption (PRA) [14] are two common

methods used to realize automatic white balance

algorithms. GWA can offer a better effect for photographs

with rich color environment and background due to its

characteristics. However, processed images may have an

undesirable shift in the entire color range when the

acquired images are with a predominant color. On the

contrary, the images with a predominant color can be

processed without a cast as people can see if PRA is

applied. However, PRA may not correctly deal with the

automatic white balance of images with multicolor. The

processed images may have an undesirable shift in the

entire color range. In 2005, Lam proposed an automatic

white balance algorithm which combines both GWA and

PRA. The algorithm can deal with automatic white balance

of images with both multicolor and a predominant color

correctly [1].
 Three approaches may be used to construct image

retrieval platforms dealing with white balance algorithms.

The first approach contains storing acquired images into

memory and executing specific software program in

computer hardware resources to process the images.

Operating systems and application programs as well as

some memory and CPU resources are required when this

method is applied. The second approach contains some

additional image processing ASICs on the image retrieval

platforms. Such ASICs can be applied to deal with images

processes. However, the image processing functions is

limited by their specifications. The third approach is to

construct image retrieval platforms using SoPC. This

method usually contains field-programmable gate array

(FPGA) chips and embedded processors with Intellectual

Property (IP) based hardware designs. This design

methodology may not consume large amount of memory

and CPU resources of PC as well as to have the properties

of easy modification and function expansion, which can

not be achieved if pure hardware architectures are used.

Some ICs may be replaced by such SoPC architecture to

contain their functions and reduce the difficulty of the PCB

designs [2].
In this research, the Xilinx’s ML402-Virtex-SX35

development board was used. The embedded processor is

using MicroBlaze Soft Core developed by Xilinx. A

floating point implementation was used to deal with the

software part of Lam’s algorithm. The hardware part of

Proceedings of the 7th WSEAS International Conference on Multimedia, Internet & Video Technologies, Beijing, China, September 15-17, 2007 203

Lam’s algorithm was implemented using an IP-based

design.
The paper is organized as follows: In Section 2,

we review the automatic white balance algorithms.

Then, in Section 3, we describe our implementing

methods for Lam’s algorithm, including

hardware-software partitioning and the evaluation of

the cost functions. In Section 4, experimental results

are presented to show the implementations and a

brief comparison is discussed. Finally, a conclusion

is given in Section 5.

2 Automatic white balance algorithms

Within this paper RI
^

, GI
^

, and BI
^

 are used to

denote the red, green, and blue values after image

processing as well as RI , GI , and BI are used to

denote the red, green, and blue values before image

processing, respectively.

2.1 Gray Word Assumption
Currently GWA algorithm is one of the most

frequently used automatic white balance algorithms.

The algorithm is based on the assumption, “all

photographs acquired by cameras are colorful

images.”. In other words, the occurrence probabilities

of red, green, and blue pixels of a picture are the

same. The gray level of a color is composed from the

averages of red, green, and blue colors. For real

situations the shooting pictures are usually with

colorful enough. It matches the assumption of GWA.

Therefore, it is necessary to adjust each average of

red, green, and blue colors to be the same when we

use GWA algorithm. An image consists of brightness

and chromaticity information. Human eyes are more

strongly sensitive to the brightness than to the

chromaticity of an image. Because 60 percent

brightness information is composed from green

colors, therefore, green is the color which can be used

to represent the brightness information of an image.

),(),(
^

yxIKyxI RRR = (1)

),(),(
^

yxIKyxI BBB = (2)

mn

yxI

mn

yxI

R

G
K

m

i

n

j

R

m

i

n

j

G

avg

avg
R

∑∑

∑∑

= =

= =

==

0 0

0 0

),(

),(

 (3)

Eqs (1) and (3) show the main computations of the

red channel [3]. The similar computation is shown in

Eq (2) can be used to obtain the blue value for the

blue channel [3]. The advantage of the GWA

algorithm is to have a better recovery of the original

appearance of the scene when the input images are

colorful. However, processed images may have an

undesirable shift in the entire color range when the

acquired images are with a predominant color.

2.2 Perfect Reflector Assumption
PRA is another famous algorithm to deal with

automatic white balance. Let us discuss the

relationship between lights and object colors first.

Objects may not show colors themselves. However,

their colors can be shown through different

wavelengths of the radiations from the illumination

in absorption, reflection, or transmission. We could

not see any object colors if there is no radiation from

the illumination. On the other hand, the object color

is white if all the radiations are reflected. Therefore,

white color objects or regions are called as perfect

reflectors. The PRA theory assumes that perfect

reflectors can be used as the reference value of a

white color in dealing with an acquired image. The

red, green, and blue for a white color object inside

any color temperature image could be the maximum

values. To achieve automatic white balance of

images the perfect reflector may be used as a

reference to correct other colors.

),(*),(
^

yxIKyxI RMaxRR = (4)

),(*),(
^

yxIKyxI BMaxBB = (5)

)},({

)},({

,

,

yxIMax

yxIMax

K
R

yx

G
yx

MaxR = (6)

Eqs (4) and (6) show the main computations of the

red channel. The similar computation shown in Eq

(5) can be used to obtain the blue value for the blue

channel [3]. The advantage of PRA algorithm is to

have a better recovery of the original appearance of

the scene when the input images are with a

predominant color. However, processed images may

have an undesirable shift in the entire color range

when the acquired images are with multicolor.

2.3 2005 Lam’s algorithm
Both PRA and GWA algorithms still have the

disadvantages as mentioned above. Lam proposed an

automatic white balance method which combines above

two algorithms in 2005. In this paper the method is called

as Lam algorithm. Lam presented two Eqs (7) and (8) to

deal with automatic white balances. The main

computations for the coefficients of the red channel are

shown in Eqs (9) - (12). The similar computation shown in

Proceedings of the 7th WSEAS International Conference on Multimedia, Internet & Video Technologies, Beijing, China, September 15-17, 2007 204

Eq (8) can be used to obtain the blue coefficients for the

blue channel [1].

),(),(),(2
^

yxIvyxIuyxI RRRRR += (7)

),(),(),(2
^

yxIvyxIuyxI BBBBB += (8)

∑∑∑∑
= == =

=
M

x

N

y

G

M

x

N

y

R yxIyxI
1 11 1

^

),(),((9)

)},({)},({
,,

yxIMaxyxIMax G
yx

R
yx

=

 (10)

∑ ∑ ∑∑∑∑
= = = ===

=+
M

x

M

x

M

x

N

y

G

N

y

RR

N

y

RR yxIyxIvyxIu
1 1 1 111

2),(),(),(

 (11)

)},({)},({)},({
,,

2

,
yxIMaxyxIMaxvyxIMaxu G

yx
R

yx
RR

yx
R =+

 (12)

Equations contain the processing of the squares of

pixels. Therefore, the processed images have the

property of enhancing the contrast of images. As with

PRA and GWA, the values of the green channel are

kept unchanged. Only the values of the red and blue

channels are adjusted. Lam’s algorithm has the

advantages of both GWA and PRA. When input

images with multicolor the processed images can

have the effect as well as the GWA method. When

input images with a predominant color the processed

images can not have the effect as well as the PRA

method. But it removes the saturation condition

during the GWA algorithm processing. Therefore,

Lam’s algorithm is better than GWA and PRA to be a

suitable method used for dealing with automatic

white balances of any different images.

3 Hardware-software co-design
The execution steps of Lam’s algorithm were divided

into three stages. The first stage is the pre-processing

of the Lam’s algorithm. It is to obtain the required

parameters of the computations for Lam’s algorithm.

The second stage is to obtain the solutions of the

equations of Lam’s algorithm. There two common

methods to be applied to obtain the solutions. One is

by Gauss Elimination. Another is by Cramer’s Rule.

The third stage is to deal with the automatic white

balance computations for each pixel. The

hardware-software co-design and analysis for each

stage was realized and evaluated. The partitions of

these three stages are shown in Fig. 1. When the

computations of the parameters for the first stage

were implemented using hardware each pixel needs 5

adders, 2 multipliers and 3 comparators.

)},({)},,({,),(,),(

)},({),,(

)},({)},,({,),(,),(

,

2

,
1 11 1

2

1 1
,

,

2

,
1 11 1

2

yxIMaxyxIMaxyxIyxI

yxIMaxyxI

yxIMaxyxIMaxyxIyxI

B
yx

B
yx

M

x

N

y

B

M

x

N

y

B

M

x

N

y

G
yx

G

R
yx

R
yx

M

x

N

y

R

M

x

N

y

R

∑∑∑∑

∑∑

∑∑∑∑

= == =

= =

= == =

∑ ∑ ∑∑∑∑
= = = ===

=+

M

x

M

x

M

x

N

y

G

N

y

RR

N

y

RR yxIyxIvyxIu

1 1 1 111

2),(),(),(∑ ∑ ∑∑∑∑
= = = ===

=+

M

x

M

x

M

x

N

y

G

N

y

BB

N

y

BB yxIyxIvyxIu

1 1 1 111

2),(),(),(

)},({)},({)},({
,,

2

,
yxIMaxyxIMaxvyxIMaxu G

yx
B

yx
BB

yx
B =+

),(),(),(2
^

yxIvyxIuyxI RRRRR +=

),(),(),(2
^

yxIvyxIuyxI BBBBB +=

)},({)},({)},({
,,

2

,
yxIMaxyxIMaxvyxIMaxu G

yx
R

yx
RR

yx
R =+

Fig. 1: Three stages of Lam’s algorithm.

The hardware implementation of the red

channel of the data-path model is shown in Fig. 2.

The same hardware was also used for the blue

channel. The similar hardware was used for the green

channel. There was no summation of multipliers

inside this similar hardware.

Fig. 2: The hardware model for obtaining the red

channel parameters (stage 1).

The computation of the second stage is to obtain

the solutions of the linear equations with two

unknown. Four methods were discussed in this paper.

They are Guass Elimination Software, Guass

Elimination Hardware, Cramer’s Rule Software, and

Cramer’s Rule Hardware. Floating point

computations are required for the second and the

third stages. Therefore, the term computation is for

the floating point computation. The employed

computation blocks were floating point operators [7].

Proceedings of the 7th WSEAS International Conference on Multimedia, Internet & Video Technologies, Beijing, China, September 15-17, 2007 205

When Guass Elimination Software was applied

6 dividers, 6 multipliers, and 6 sub-tractors were

required for a frame. The hardware implementation

of the red channel of the data-path model is shown in

Fig. 3. The same hardware was also used for the blue

channel. When Cramer’s Rule Software was applied

12 multipliers, 6 sub-tractors, and 4 dividers were

required for a frame. The hardware implementation

of the red channel of the data-path model is shown in

Fig. 4. The same hardware was also used for the blue

channel.

The computations of the parameters for the third

stage is write back the pixel data when the software

implementation were applied. 3 multipliers and 1

adder were required for a pixel. The hardware

implementation of the red channel of the data-path

model is shown in Fig. 5. The same hardware was

also used for the blue channel.

Fig. 3: The hardware implementation of Guass

Elimination for the red channel parameters

Ru and Rv (stage 2).

Fig. 4: The hardware implementation of Cramer’s

Rule for the red channel parameters Ru and Rv

(stage 2).

Fig. 5: The data-path model of writing back the pixel

data.

3.1 Sixteen hardware-software partitions
There sixteen partitions were used to implement

SOPC to deal with the Lam’s algorithm. Three

factors including processing times, usages of Slices

and DSP48 of hardware resources were used to

formulate a cost function, which was employed to

evaluate the system performance and hardware

resource cost. Each Slice contains a set of D-FlipFlop

and 4-bit programmable logic. Table 1 shows these

sixteen hardware-software partitions.

Table 1. Sixteen hardware-software partitions.

 Stage1 Stage2 Stage3

Case1 SW Gauss Elimination SW SW

Case2 SW Gauss Elimination SW HW

Case3 SW Gauss Elimination HW SW

Case4 SW Gauss Elimination HW HW

Case5 SW Cramer’s Rule SW SW

Case6 SW Cramer’s Rule SW HW

Case7 SW Cramer’s Rule HW SW

Case8 SW Cramer’s Rule HW HW

Case9 HW Gauss Elimination SW SW

Case10 HW Gauss Elimination SW HW

Case11 HW Gauss Elimination HW SW

Case12 HW Gauss Elimination HW HW

Case13 HW Cramer’s Rule SW SW

Case14 HW Cramer’s Rule SW HW

Case15 HW Cramer’s Rule HW SW

Case16 HW Cramer’s Rule HW HW

3.2 Software operations using floating-point

operation units
The employed algorithm contains floating point

operations. Micro-Blaze embedded processor 4.0

version [8] can support additional floating point

Proceedings of the 7th WSEAS International Conference on Multimedia, Internet & Video Technologies, Beijing, China, September 15-17, 2007 206

operation units. Additions, subtractions,

multiplications, and divisions of the floating point

operations can speed-up from 15 to 266 times [9]. In

this paper, MicroBlaze embedded processor 4.0

version with floating point operation units were used

for the software implementation.

3.3 Hardware operations using floating point

operators
The software for realizing the design and synthesis of the

partitioned hardware is using Xilinx Integrated Software

Environment 7.1 iSP2. The floating point operators used

for the second and the third stages are constructed using

Floating Point Operator v1.0 [7] generated by Xilinx

CoreGenerator. The width of the buses, data bit

definitions, and operator types of the floating point

operations can be defined using adjusting the setup of

CoreGenerator. In this paper the format of the floating

point operations was set as single precision of IEEE-754

standard. One bit is used as the sign bit. 8 bits are used as

the exponent. 23 bits are used as the mantissa.

3.4 Defining an objective function
An objective function [4] which was used to evaluate

the system is shown in Eq (13). Two factors were

considered in our systems. They are processing times

and usages of hardware resources. To evaluate the

usages of hardware resources the usages of hardware

resources are further divided into the usages of Slices

and the usages of DSP48 slices (DSP48s). To realize

the objective function and calculate it for various

conditions of the partitions time, slices and DSP48s

denote the maximum values of the sixteen partitions,

respectively. Let timereal , slicesreal, and DSP48sreal
denote the actual value for each partition,

respectively.

After computing the sixteen evaluation values

can be obtained from the Objective Function. If the

evaluation value is closed to 1 it means that the

system can have the expected performance with a

faster execution time, a smaller amount of Slices, and

a smaller amount of DSP48s. The parameters, α , β ,

and γ of Eq (13) are used to achieve a balance of the

execution efficiency and the hardware resources.

They represent the specified weights of the execution

time, the usage of Slices, and the usage of DSP48s. In

this research, we set
2

1
=α ,

4

1
=β , and

4

1
=γ .

The applications of the automatic white balance

algorithms of digital images are very wide, such as

digital cameras, image capturing cards, smart

cameras, etc. For different performance requirements

the three parameters of the objective function can be

modified to meet the desired constraints.

Objective Function

*

*

48 48
*

48

real

real

real

time time

time

slices slices

slices

DSP s DSP s

DSP s

α

β

γ

−
=

−
+

−
+

 (13)

To enable readers understanding the objective

function, an example is used to explain it. First the

weight ratio of the processing time and hardware

resources were set to be 1:1 (see Eq (14)). It was not

only for obtaining execution efficiency but also for

reducing hardware resources. Then the sum of the

weights were set to be 1 (see Eq (15)). Similarly, it is

to achieve that the weights of Slices and DSP48s of

the hardware are the same. That is,
4

1
=β and

4

1
=γ .

1:1)(: =+ γβα (14)

Let 1=++ γβα (15)

2

1
)(,

2

1
=+==> γβα

Alternatively, we define a cost function to show the

increasing percentage ratio of the execution

efficiency and the cost. It is shown in Eq (16).

real

real real

Cost Function

execution efficiency increment%
=

hardware resource increment%

time-time

time=
slices-slices 1 DSP48s-DSP48s 1

1-(* + *)
slices 2 DSP48s 2

 (16)

In the cost function the numerator denotes the

efficiency improvement variation of the execution

time. The denominator denotes the cost increment

caused by the usage increment of the hardware

resources (Slices and DSP48 slices). The greater ratio

values mean that the design has shorter execution

time and lower cost.

Proceedings of the 7th WSEAS International Conference on Multimedia, Internet & Video Technologies, Beijing, China, September 15-17, 2007 207

4 Experimental Results

A typical system architecture was used to implement the

system for this research [5]. MicroBlaze is a Soft Core

processor developed by Xilinx. The DDR SDRAM

Controller is an external memory controller. The On Chip

Peripheral (OPB) is a peripheral bus. The IP Interface is a

bus interface. The CameraLink Deserial is an input

interface for digital cameras. The Region of Interesting

(ROI) denotes the some region processing circuits. The

Auto White Balance Stage1 HW and Stage3 HW denote

the designed circuits for the partition for Case14.

The flow for fetching images is shown in Fig. 6.

The first step is that the SVS282 camera sent out

Bayer arrangement CCD sensed images [10] to the

Low Voltage Differential Signal (LVDS) pin [11] of

the ML402 development board by CameraLink

interface. The second step is that the Virtex4-SX35

FPGA image chip executes the function of the

Region of Interesting (ROI) and stores the fetched

images into the Double Data Rate Synchronous

Dynamic Random Access Memory (DDR SDRAM)

of the development board to finish the image fetching

processing. The third step is to execute the automatic

white balance algorithms. Due to the automatic white

balance processed images are still CFA color patterns

[12]. For the verification and the convenience of

observations, the fourth step is to execute the pixel

generation of the differences of adjacent pixels using

MicroBlaze. Various software-hardware partitioning

implementations were downloaded into FPGA by the

Joint Test Action Group (JTAG) interface and

estimated experimental results are shown in this

section. To verify the experimental results the images

were transmitted to the computer via the Universal

Asynchronous Receiver/Transmitter (UART)

interface. Then a Visual Basic application program

was used to receive the automatic white balance

processed images at the computer end. They were

stored into the files using Bitmap (BMP) format. The

whole experimental environment is shown as Fig. 7.

Fig. 6: The flow of fetching images

Fig. 7: The system connections and the whole

experimental environment of fetching

images

0
200000
400000
600000
800000

1000000

Ca
se

1
Ca

se
2

Ca
se

3
Ca

se
4

Ca
se

5
Ca

se
6

Ca
se

7
Ca

se
8

Ca
se

9
Ca

se
10

Ca
se

11
Ca

se
12

Ca
se

13
Ca

se
14

Ca
se

15
Ca

se
16

Execution time (us) Case1--All SW

Fig. 8: Execution time comparisons of 16 different

partitions and the pure software

implementation case (Case1)

0
500

1000
1500
2000
2500
3000

Ca
se

1

Ca
se

2
Ca

se
3

Ca
se

4

Ca
se

5
Ca

se
6

Ca
se

7

Ca
se

8
Ca

se
9

Ca
se

10

Ca
se

11
Ca

se
12

Ca
se

13

Ca
se

14
Ca

se
15

Ca
se

16

Case1--All SW Total Slices

Fig. 9: Comparisons of hardware resource Slices usages of

16 different partitions and the pure software

implementation case (Case1)

In the experiments the execution time was

counted for the 320 x 240 resolution images. The

experimental statistics of execution times, Slices, and

DSP48s are shown in Figures 8, 9, 9, and 10

respectively. The evaluation values of objective

function and the cost function are shown in Table 2

and Fig. 11.

Proceedings of the 7th WSEAS International Conference on Multimedia, Internet & Video Technologies, Beijing, China, September 15-17, 2007 208

0
10
20
30
40
50
60
70
80
90

Ca
se

1

Ca
se

2

Ca
se

3

Ca
se

4

Ca
se

5

Ca
se

6

Ca
se

7

Ca
se

8

Ca
se

9

Ca
se

10

Ca
se

11

Ca
se

12

Ca
se

13

Ca
se

14

Ca
se

15

Case1--All SW Total DSP48 Blocks

Ca
se

16

Fig. 10: Comparisons of hardware resource DSP48 usages

of 16 different partitions and the pure software

implementation case (Case1)

Table 2: Objective Function and Cost Function
 Stage

1
Stage

2

Stage

3

Objective

Function

Cost

Function

Case1 SW Gauss Elimination SW SW 0.4267 0.0001
Case2 SW Gauss Elimination SW HW 0.7384 2.3018
Case3 SW Gauss Elimination HW SW 0.2169 0
Case4 SW Gauss Elimination HW HW 0.5286 1.0728
Case5 SW Cramer’s Rule SW SW 0.4267 0.0001
Case6 SW Cramer’s Rule SW HW 0.7384 2.3018
Case7 SW Cramer’s Rule HW SW 0.1266 0
Case8 SW Cramer’s Rule HW HW 0.4384 0.8724
Case9 HW Gauss Elimination SW SW 0.4248 0.4405
Case10 HW Gauss Elimination SW HW 0.7365 1.9679
Case11 HW Gauss Elimination HW SW 0.2149 0.1720
Case12 HW Gauss Elimination HW HW 0.5999 1.2624
Case13 HW Cramer’s Rule SW SW 0.4248 0.4405
Case14 HW Cramer’s Rule SW HW 0.7365 1.9679
Case15 HW Cramer’s Rule HW SW 0.1247 0.1363
Case16 HW Cramer’s Rule HW HW 0.5097 1.0206

As shown evaluation of the objective function,

Case6 and Case2 both were rank one. Case10 and

Case14 both were rank two. Both Case2 and Case6

implemented the computations of the first stage using

the software. They also implemented the

computations of the second stage using the software.

They implemented the computations of the third

stage using the hardware. However, they used

different methods for the solutions in the second

stage. Their performance is able to deal with a 64 M

pixels picture per second. It is equal to have an 800 x

800 resolution. The difference of the evaluations

between the best case and Case10 and Case14 is only

0.0021. Their performance is able to deal with a 2.5

M pixels picture per second. It is equal to have a 1580

x 1580 resolution. The difference between Case10

and Case14 is using different methods for the

solutions in the second stage. Case14 is 0.49 μ s

faster than Case10 under the same amount of

hardware resource usages. For the requirements of

several M pixels digital picture resolutions we

decided to take Case14 which is able to deal with a

2.5 M pixels picture per second as well as have a

balance between performance and hardware

resources. The system architecture is shown in Fig.

12.

Table 3: Total execution time
 Stage 1 Stage

2

Stage

3

Total

execution

Time (μ s)

Case1 SW Gauss Elimination SW SW 782701.244
Case2 SW Gauss Elimination SW HW 122701.244
Case3 SW Gauss Elimination HW SW 782709.260
Case4 SW Gauss Elimination HW HW 122709.250
Case5 SW Cramer’s Rule SW SW 782700.747
Case6 SW Cramer’s Rule SW HW 122700.747
Case7 SW Cramer’s Rule HW SW 782706.500
Case8 SW Cramer’s Rule HW HW 122706.500
Case9 HW Gauss Elimination SW SW 690001.244
Case10 HW Gauss Elimination SW HW 30001.244
Case11 HW Gauss Elimination HW SW 690009.260
Case12 HW Gauss Elimination HW HW 30009.250
Case13 HW Cramer’s Rule SW SW 690000.747
Case14 HW Cramer’s Rule SW HW 30000.747
Case15 HW Cramer’s Rule HW SW 690006.500
Case16 HW Cramer’s Rule HW HW 30006.500

Table 4: Total usages of hardware resources (Slices)

 Stage

1

Stage

2

Stage

3

Total

Slices

Case1 SW Gauss Elimination SW SW 678
Case2 SW Gauss Elimination SW HW 1103
Case3 SW Gauss Elimination HW SW 1944
Case4 SW Gauss Elimination HW HW 2369
Case5 SW Cramer’s Rule SW SW 678
Case6 SW Cramer’s Rule SW HW 1103
Case7 SW Cramer’s Rule HW SW 2152

Proceedings of the 7th WSEAS International Conference on Multimedia, Internet & Video Technologies, Beijing, China, September 15-17, 2007 209

Case8 SW Cramer’s Rule HW HW 2577
Case9 HW Gauss Elimination SW SW 1288
Case10 HW Gauss Elimination SW HW 1713
Case11 HW Gauss Elimination HW SW 2554
Case12 HW Gauss Elimination HW HW 2301
Case13 HW Cramer’s Rule SW SW 1288
Case14 HW Cramer’s Rule SW HW 1713
Case15 HW Cramer’s Rule HW SW 2762
Case16 HW Cramer’s Rule HW HW 2509

As shown in Table 3 the execution time of

Case14 is 30000.747 μ s. It is 26 times faster than

the pure software case (782701.244 μ s). A floating
point unit (FPU) is about 678 Slices. As shown in

Table 4 the hardware resources of several cases are

equal to 4 times of a FPU.

For parallel processing the second stage data the

hardware implementation of the stage required 1266

Slices if Gauss elimination method is applied.

Alternatively, it required 1474 Slices if Cramer’s rule

is applied. The Slice usage of both hardware is over 2

times of a FPU. The hardware execution time of

Gauss elimination method was about 9.26 μ s . The
hardware execution time of Cramer’s rule was about

6.5 μ s .
From the evaluations of the objective function

the sequence of the optimal solutions is Case2 =

Case6 > Case14 = Case10 > Case12 > Case4 >

Case16 > Case8 > Case1 = Case5 > Case9 = Case13

> Case3 > Case11 > Case7 > Case15. From the

evaluations of the cost function the sequence of the

optimal solutions is Case2 = Case6 > Case14 =

Case10 > Case12 > Case4 > Case16 > Case8 > Case9

= Case13 > Case11 > Case15 > Case1 = Case5 >

Case3 = Case7. View these two evaluations the

sequences are very similar. The difference is that the

cost function evaluations of Case1, Case5, Case3,

and Case7 are close to the worst case. Due to the

execution efficiency increment percentage approach

to 0 they are at the last four places in the sequence.

On the other hand, due to the objective function is

with the linear accumulation property and these four

cases consumed less hardware resource they are not

at the last four places in the objective function

evaluation sequence. Due to the objective function is

with the linear accumulation property it is able to

show the system performance at the execution

efficiency increment and the hardware economy. The

optimal solution of the objective function evaluation

is also with the optimal ratio of efficiency and cost.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Ca
se

1

Ca
se

2

Ca
se

3

Ca
se

4

Ca
se

5

Ca
se

6

Ca
se

7

Ca
se

8

Ca
se

9

Ca
se

10

Ca
se

11

Ca
se

12

Ca
se

13

Ca
se

14

Ca
se

15

Ca
se

16

Objective Function Case1--All SW

Fig. 11 : Evaluations

For the experiment Philips PL18114 table lamp and

PL-L827 fluorescent tube were used. As shown in

Fig. 13 Color boards, dolls, thermos mugs were put

inside the images to view the situations of processed

images by Lam’s automatic white balance algorithm.

Fig. 12: The system architecture.

Fig. 13: 2700° K illuminant experiments. (A) Color

board, (B) original images, and (C)

automatic balance processed images.

Color temperature 2700° K was used for the

experiment. Fig. 13 (A) shows a standard color

Proceedings of the 7th WSEAS International Conference on Multimedia, Internet & Video Technologies, Beijing, China, September 15-17, 2007 210

board. Fig. 13 (B) shows the original fetched images.

Fig. 13 (C) shows the images which were processed

by the automatic white balance SoPC. It is clearly

shown that the color board images in Fig. 13 (C) are

close to the color board shown in Fig 13 (A).

Compare colors of gray scales at the fourth rows of

color boards shown in Fig. 13 (A), (B), and (C). The

color of gray scale at the fourth row of the color

board shown in Fig. 13 (B) biased to yellow. This is a

feature of images with low color temperature.

After we computed the cost function of Eq (13)

using the actual execution times and the usages of

Slices and DSP48s for the sixteen partitions. The

evaluation values of sixteen cases were obtained.

They are shown in Table 5 and Fig. 11.

Table 5: The cost function evaluations

Stage

1

Stage

2

Stage

3
Evaluations

Case1 SW Gauss Elimination SW SW 0.4264
Case2 SW Gauss Elimination SW HW 0.7486
Case3 SW Gauss Elimination HW SW 0.2143
Case4 SW Gauss Elimination HW HW 0.5365
Case5 SW Cramer’s Rule SW SW 0.4264
Case6 SW Cramer’s Rule SW HW 0.7486
Case7 SW Cramer’s Rule HW SW 0.1223
Case8 SW Cramer’s Rule HW HW 0.4445
Case9 HW Gauss Elimination SW SW 0.4243
Case10 HW Gauss Elimination SW HW 0.7465
Case11 HW Gauss Elimination HW SW 0.2122
Case12 HW Gauss Elimination HW HW 0.5957
Case13 HW Cramer’s Rule SW SW 0.4243
Case14 HW Cramer’s Rule SW HW 0.7465
Case15 HW Cramer’s Rule HW SW 0.1202
Case16 HW Cramer’s Rule HW HW 0.5037

5 Conclusion
In this paper, a hardware-software co-design

methodology was used to implement automatic white

balance functions, which is based on FPGA chips and

a SoPC architecture. The hardware design using an

IP-based method with an embedded processor is able

to reduce the memory and CPU resources of PC as

well as to have the properties of easy modification

and function expansion.

The chosen automatic white balance algorithm

which combines and is based on the gray word

assumption and the perfect reflector assumption

theories to achieve the automatic white balance

correction for acquired images. It causes that the

color temperature of images is the same as human

eyes. By the automatic white balance algorithm it is

able to automatically adjust the internal image color.

It is able to show the correct color as human eyes

when the illumination of the light source vary.

We used the hardware-software co-design

methodology to implement the automatic white

balance algorithm on a SoPC. An objective function

was used to evaluate sixteen hardware-software

partition cases and to achieve a balance between

execution performance and hardware resources. The

performance of the partitioned result was 26 times

faster than the pure software implementations. It is

able to deal with a 2.5 M pixels picture per second.

The amount of the additional hardware resources is 4

times of a FPU. The system architecture has the

properties of easy modification and function

expansion. It shows the advantage of the SoPC

design. As FPGA process techniques is continuous

improved, the system may have a better performance

if energy consumptions can be further considered

together.

References:
[1] E. Y. Lam, “Combining Gray World and Retinex

Theory for Automatic White Balance in Digital

Photography,” Proceedings of the Ninth International

Symposium on Consumer Electronics, June 2005, pp.

134-139.

[2] W. Wolf, “A Decade of Hardware/Software

Codesign,” Computer, vol. 36, Issue 4, April 2003,

pp.38-43.

[3] F. Gasparini and R. Schettini, “Color correction for

digital photographs,” Proceedings of the 12th

International Conference on Image Analysis and

Processing, 2003, pp. 646-651.

[4] Y. Zou, Z. Zhuang and H. Chen, “HW-SW Partitioning

Based on Genetic Algorithm,” Congress on

Evolutionary Computation, vol. 1, June 2004, pp.

628-633.

[5] S. Kawamura, “Capturing images with digital still

cameras,” IEEE Micro, vol. 18, Issue 6, Nov.-Dec.

1998, pp.14-19.

[6] Chan-Pang Kuok, “The Design of a Dectection System

of Copper Foil Defects on Printed Circuit Boards

under System-on-chip Structure ,” Master Thesis,

Department of Electrical Engineering, National Cheng

Kung University, Taiwan, Jun. 2004.

[7] Xilinx, Inc., “Xilinx Logicore Floating-Point Operator

v1.0,” April 2005.

[8] Xilinx, Inc., “MicroBlaze Processor Reference Guide,”

Ver.5.2 May 9, 2005.

[9] An Enhanced 32-Bit Processor Core for FPGA

Integration,

http://ramp.eecs.berkeley.edu/Publications/MBforRA

Proceedings of the 7th WSEAS International Conference on Multimedia, Internet & Video Technologies, Beijing, China, September 15-17, 2007 211

MP2.ppt

[10] SVS-VISTEK CAMERAS Inc., “Digital Progressive

Area Scan Camera SVCam User`s Manual

Monochrome / Color Version LVDS-Version /

Camera Link Version with 10/12 Bit Digitization,”

Ver. 1.6, May 2003.

[11] Automated Imaging Association, “Camera Link

Specifications of the Camera Link Interface Standard

for Digital Cameras and Frame Grabbers,” Ver.1.1,

Jan. 2004.

[12] T. Chen, “A Study of Spatial Color Interpolation

Algorithms for Single-Detector Digital Cameras,”

Information System Laboratory Department of

Electrical Engineering Stanford University,

http://www-ise.stanford.edu/~tingchen/.

[13] M. Fedor, “Approaches to color balancing,”

PSYCH221/EE362course project, Department of

Psychology, Stanford University, U.S.A., 1998.

[14] J. Chiang and F. Al-Turkait, “Color balancing

experiments with the HP-photo smart-C30 digital

camera,” PSYCH221/EE362 course project,

Department of Psychology, Stanford University,

U.S.A., 1999.

Proceedings of the 7th WSEAS International Conference on Multimedia, Internet & Video Technologies, Beijing, China, September 15-17, 2007 212

