
ChipOS based Grid Computing

Jijun MA
Computer Science College

Zhejiang University
Hangzhou, Zhejiang

CHINA
jjm@zju.edu.cn

Man Cao
Computer Science College

Zhejiang University
Hangzhou, Zhejiang

CHINA
tsaoman@gmail.com

Wei Ma
Computer Science College

Zhejiang University
Hangzhou, Zhejiang

CHINA
jjmmma@gmail.com

Tianzhou Chen
Computer Science College

Zhejiang University
Hangzhou, Zhejiang

CHINA
tzchen@zju.edu.cn

Abstract: Grid computing technology has become the most popular and mature way of distributed computing
recently. At the same time, embedded system and System-on-Chip(SoC) architecture are becoming commonly
used in calculation area, because of the low design cost and extensible architecture. These new technology provides
a noval way to construct grid computing infrustructure with embedded system on SoC. This paper presents a dual
OS architcture to establish a grid computing infrustructure, with a on-chip OS named ChipOS to provide grid
computing tasks dispatching and the general purpose operating system to deal with normal computing tasks. This
dual OS grid computing architecture is proved an effective task dispatching platform for grid computing.

Key–Words: Grid Computing, System-on-Chip, Embedded System, Dual OS, Scratch Pad Memory

1 Introduction

Grid computing technology has become the most pop-
ular and mature way of distributed computing. Com-
putational Grids enable the sharing, selection, and
aggregation of a wide variety of geographically dis-
tributed computational resources, such as supercom-
puters, computer clusters, storage systems, and data
sources. The grid computing technology presents all
these resources as a single, unified resource for solv-
ing large-scale compute and data intensive computing
applications (e.g, molecular modeling for drug design,
brain activity analysis, and high energy physics).

The modern grid architecture is often regarded as
a three-layer (sometimes four-layer) model. In both
case the key to success of grid is the middleware, the
software that organizes and integrates the disparate
computational facilities belonging to a Grid, which
lies between OS and grid application.

Embedded systems have become a large part of
computational resources recently, but they are sel-
dom used in grid computation. With the development
and improvement of the computing power of embed-
ded hardware, especially the emergence of system-on-
chip(SoC) technology in embedded domain, it is more
and more possible to use embedded systems in grid
computing architecture.

SoC is an idea of integrating all components of
a computer or other electronic system into a single
integrated circuit(chip). A typical SoC chip consists
of the following components: one or more micropro-
cessor cores, memory devices such as ROM, RAM

and Flash, reconfigurable components such as FPGA,
etc.[1]

A typical SoC architecture with reconfigurable
logic and multiple processing cores can share a
common memory hierarchy such as L2 cache and
memory. The on-chip memory called Scratch Pad
SRAM(SPM) can be accessed by these cores. SPM
is a kind of memory device with the characteristics of
high performance of reading-writing speed and low
power consumption. Generally, the size of SPM is
256 KB to 768 KB.[2] [3]

As the increasing needs of the Grid Computing,
SoC technology provides a method to conquer the lim-
itation of the current Grid architecture. Since the ad-
vantage of on-chip memory SPM, we describe an ar-
chitecture of Grid computing based on the SoC of dual
OS.

Since middleware is pure software above OS, the
performance of computational grid is somehow af-
fected by the inefficiency of middleware, especially
if the computational resource is small-scaled such as
embedded system. There is possibility to improve the
performance if we embed some basic function of mid-
dleware into lower level.

Thus this paper suggests a ChipOS based grid
computing framework to make use of SoC architec-
ture and describes how to construct the grid comput-
ing architecture base on the SoC with dual OS of a
ChipOS and a GPOS.

The rest of this paper describes the design and
implementation of the ChipOS based grid computing
framework. Section 2 describes the design of chip os,

Proceedings of the 7th WSEAS International Conference on Simulation, Modelling and Optimization, Beijing, China, September 15-17, 2007 171

and the grid computing related works. The coordina-
tion of ChipOS and GPOS is described in Section 3.
Section 4 is about the implementation of our grid com-
puting architecture. Section 5 offers the conclusion of
our research and future work.

2 Related Works

The ChipOS is a small operating system for SoC ar-
chitecture developed by the research group of au-
thors’ laboratory. The basic system contains five mod-
ules, task management, memory management, net-
work communication and interrupt routines. The task
management is the main work of the task management
module. It is designed to be able to schedule tasks by
different policies, such as FCFS(first come, first serve)
or SJF(shortest job first). The memory management
splits the memory into three type of regions – kernel
region, real-time region and user region – for different
type of processes.

It is important to mention how is the two operat-
ing system loaded into the board. ChipOS is firstly
loaded into the on-chip memory and then the ChipOS
loads the GPOS into off-chip memory. At last, after
the loading process, the ChipOS establishes the infras-
tructure for both OS running on-chip or off-chip.

The jobs of ChipOS and GPOS are divided into
several parts according their properties.

The jobs of the GPOS:

1. Schedules the processes arrived to GPOS and
dispatches them between GPOS and ChipOS.

2. Manages off-chip resources, such as SDRAM
management, off-chip hardware driver manage-
ment.

3. Provides the basic infrastructure for applications
execution environment.

The jobs of the ChipOS:

1. Manages on-chip memory SPM.

2. Provides the real-time API for applications dis-
patched to ChipOS by GPOS.

3. Manages on-chip computing resources such as
on-chip process units and reconfigurable logic.

The dual OS architecture containing ChipOS and
GPOS is an extensive architecture for several uses.
This architecture is used in the following applications:

1. ChipOS can be used as a system monitor to mon-
itor the GPOS’s resources usage, such as CPU
usage, memory usage, and file system usage. It
will make use of the profile to figure out execu-
tion policies for GPOS.

2. In security domain, ChipOS is used as a plat-
form for anti-virus program to do virus detection
works on GPOS.

3. The dual OS architecture can be also used
in computation-intensive system, where the
ChipOS can monitor the work overload of the
GPOS and schedule the tasks between several
parallel computer nodes.

A simple architectural description about modern
computational grid is given here. There are three nec-
essary components(layers) to form a grid:

1. Grid fabric:

Fabric is the interfaces to local control[4]. This
is the lowest level that provides the access to the
actual resources.

2. Grid middleware:

Middleware is the core component of the Grid ar-
chitecture, which provides communication pro-
tocols, authentication protocols, resource dis-
covery and management, storage access, task
scheduling and other services necessary to build
a grid[4][6]. Sometimes this layer is divided into
two layers: resources and connectivity protocols,
and collective services[4].

3. Grid applications:

This is the topmost layer which compromises
user applications. Applications are constructed
in terms of services defined at middleware layer.
They often needs access to remote processing el-
ement and resources. An application program-
mer will see APIs defined to exchange protocol
messages with the appropriate service(s) to per-
form desired actions[4].

Most of the research on embedded system with
grid computing is to utilize the portability of embed-
ded system, such as collecting and sending informa-
tion. Few have thought of embedded system as a sort
of computing resources in grid technology.

Danny Hughes, Phil Greenwood et al. [7] pro-
posed a novel Grid-based approach to supporting
flood prediction through the use of embedded sensor
nodes equipped with wireless networking technology.

Chen-Khong Tham, Rajkumar Buyya et al. [8]
discussed the integration of sensor networks and grid
computing in sensor-grid computing, which enables
the construction of real-time models and databases
of the environment and physical processes as they
unfold, from which high-value computations like
decision-making, analytics, data mining, optimization

Proceedings of the 7th WSEAS International Conference on Simulation, Modelling and Optimization, Beijing, China, September 15-17, 2007 172

GPOS

ChipOS

Internet

Application

GPOS

ChipOS

Application

GPOS

ChipOS

Application

Grid

Application

Grid API

FABRIC

MIDDLEWARE

APPLICATIONS

Service

and Protocol

Figure 1: Layers of Grid SoC and Grid Network

and prediction can be carried out to generate ’on-the-
fly’ results.

Embedded systems currently used in grid com-
puting are just a kind of real-time infomation collec-
tion interfaces. The full computing resource and the
effective manipulation of low level hardware are not
digged out from embedded domain. Thus, it is possile
to use the ChipOS based grid framework to full utilize
the ever-growing embedded system resources.

3 ChipOS based Grid Framework
3.1 Architecture of the ChipOS based Grid

The on-chip SPM in SoC architecture has fast write
and read speed compare to off-chip memory. The
CPU cycles for accessing SPM data are only about
3 cycles. This proved to be an effective memory us-
age for applications. The basic tasks – package dis-
patching, connectivity check and transportation – can
be done with the ChipOS for the sake of efficiency.
Thus, this paper introduces the ChipOS based grid ar-
chitecture to make use of the effective SoC hardware.

The three layers of Grid SoC is depicted in figure
1. Grid SoC is a three-layer model. Fabric is the Inter-
net, ChipOS and the processors. Some basic function
of middleware is provided by Grid API, which is part
of ChipOS. The nodes in grid network are same in
structure but different in function during the process
of running a grid application.

The change between traditional SoC and Grid
SoC is that we integrate basic function of Grid mid-
dleware directly into the ChipOS, so that we can take
advantage of the SoC. ChipOS, as part of the fabric
layer, is in charge of some basic functions of the mid-
dleware. These mainly include package management,
connectivity check and transportation, and necessary
communication among ChipOSes. Other functions of
middleware are implemented by the service and pro-
tocols above GPOS.

grid application

Grid API of Chip OS

distrubute the tasks run the tasks

server

nodes

return the resultscollect the results

return application

Service and Protocal

network

network

Figure 2: Network Architecture,Communications and
Task distribution of Our Grid Computing

Figure 1 depicts three ChipOSes. In the process
of running a grid application, we regard the one with
Grid API on the right as server node, the other two as
ordinary nodes.

The basic function of the server node is to divide
the grid application into small parts and distribute to
other ordinary nodes in the grid. The function of the
ordinary nodes is to run and coordinate the given task,
and communicate with each other. The logical con-
nections between ChipOSes actually are the physical
Internet connections. All the nodes can simultane-
ously run the non-grid applications above GPOS.

In fact, all the nodes in the grid are the same
in structure and in ChipOS. They all have Grid API,
and necessary grid service and protocols above GPOS.
This means that any node can be the server node. The
words ”server” and ”ordinary” are only to distinguish
the different roles of nodes in the process of running a
single grid application.

3.2 Task Processing

Figure 2 depicts the network architecture, communi-
cations and task distribution in grid computing.

When ChipOS receives a network package, it first
tests the package to see whether it is a grid package.
If it is, ChipOS sends the package to ChipOS network
interface, loads balance through the ChipOS grid API,
and runs the grid task. Otherwise, it delivers the pack-
age to GPOS network driver, pushes into the network

Proceedings of the 7th WSEAS International Conference on Simulation, Modelling and Optimization, Beijing, China, September 15-17, 2007 173

Network package

ChipOS

test package GPOS network driver

Network

package

ChipOS

Network interface

network stack

resolve the package

ChipOS grid API

load balance

Run the Grid task

Grid package

Figure 3: Task distribution process of Our Grid Com-
puting

stack and then let GPOS resolve the package.
Figure 3 describes task distribution process of our

grid computing.
The task distribution process is described as fol-

lowing:

1. The middleware of grid application running on
the server’s GPOS calls the grid API to notify
the ChipOS on the server.

2. When ChipOS on the server is ready, it starts to
collect the data from grid application, and dis-
tributes the task to various nodes on the internet
through the task-distribution modularity. Task
scheduling and load balance is also needed here.

3. The result is returned to the server when each
node complete it’s task. The server is responsible
for collecting the results.

4. Server returns the result to the grid application.

4 Implementation of ChipOS based
Grid Computing

The Intel XScale PXA is used as the SoC architecture
in our research. Intel PXA27x processor is the product
of Intel Company and it is an integrated system-on-
a-chip microprocessor designed for mobile devices.
The frequency of PXA27x development board is 520

Table 1: Extra cache mapped to registers
Address Name Description

0x58000000 - – reserved
0x58FFFFFC
0x5C000000 - Memory Bank0 64-KByte SRAM
0x5C00FFFC
0x5C010000 - Memory Bank1 64-KByte SRAM
0x5C01FFFC
0x5C020000 - Memory Bank2 64-KByte SRAM
0x5C02FFFC
0x5C030000 - Memory Bank3 64-KByte SRAM
0x5C03FFFC
0x5C040000 - – reserved
0x5C7FFFFC
0x5C800000 - – reserved
0x5FFFFFFC

General
purpose
API for
GPOS

Package
testing

API

Task
distribution

API

Task
scheduling

API

Synchronization
API

ChipOS API

Task management API

API for grid computing

Figure 4: The componets of ChipOS API

HZ. PXA27x provides extra 256K cache which is con-
sidered as internal memory. This internal memory-
mapped SRAM consists of four banks with the capac-
ity of 64K. The SRAM array module consists of four
banks of 8K x 64bit memory arrays. Each memory
bank has a dedicated single-entry queue and 8K x 64
bits for data storage. If a memory bank is in standby
mode, the access request is stored in the queue while
the memory bank is placed in run mode. The ac-
cess is completed when the memory bank has entered
run mode. If a memory bank is in run mode and the
queue does not contain any pending access requests,
the queue is bypassed and the memory is accessed
normally. Table 1 describes the division of SRAM.

Package dispatching, connectivity check and
transportation of the computation module is movde
from middle ware of grid computing architecture into
ChipOS through the invokong of ChipOS API.

4.1 ChipOS API

The architecture of our ChipOS API is indicated in
figure 4.

GPOS and the middleware all communicate with
ChipOS through ChipOS API. So first of all,we must
design and implement a series of ChipOS APIs to pro-

Proceedings of the 7th WSEAS International Conference on Simulation, Modelling and Optimization, Beijing, China, September 15-17, 2007 174

vide this function. The ChipOS API are divided into
two parts:

1. General purpose API, used by the GPOS to per-
form normal tasks.

2. Grid API, called by grid applications and is re-
sponsible for the whole process of grid computa-
tion.

We pay more attention to the GPOS API since
it is the base of our grid architecture.The upper level
GPOS and grid applications all need these APIs to
complete their task. We also divide them into different
parts via thier different functions.Here are some more
detailed descriptions of each part:

1. Task management API

These API are designed to perform task distri-
bution, task scheduling and synchronization be-
tween nodes.

2. Task distribution API

The server node calls task distribution API to do
the task distribution.

3. Task scheduling API

The server node calls task scheduling API to do
the task scheduling.

4. Synchronization API

The nodes on the system calls synchronization
API to communicate with other nodes,to ex-
changes data,information.

The ChipOS is responsible for handling the in-
coming network packages. There are two categories
of package, one for GPOS applications while the other
for grid applications. We modify the network protocol
stack of our ChipOS, make it able to detect which cat-
egory of an incoming network package belongs to. We
also add several bytes of identification in the network
packages of grid application. Thus before delivering
each package to the upper applications, ChipOS must
look at the package header and then decide where to
send package.

4.2 Design of Grid Computing

An ideal grid environment requires many features to
be realized. These include secure access to resources,
single resources sharing and multiple resources coor-
dinating. Due to the limited capacity of ChipOS, we
cannot provide these functions in ChipOS. The ser-
vices and protocols above GPOS handle these issues.

Table 2: Basic data of ChipOS
ChipOS load time 3 ms
ChipOS kernel size 8K
switch time 4.307 µs
watchdog code size 390 lines of arm assembly

Instead, ChipOS Grid API helps the middleware
to complete its tasks. Package testing API processes
part of the metadata in a network package, task man-
agement API directly deal with the basic function of
task distribution and coordination. The communica-
tion among ChipOSes is also done by API. In essence,
ChipOS Grid API offers great convenience to middle-
ware.

We also modify the GPOS to make it fully coop-
erate with our grid architecture. The middleware in
the upper level is running on GPOS, since in our ar-
chitecture it sometimes need to call the ChipOS API
directly, the GPOS must provide such interfaces that
middleware can directly call the ChipOS API safely
and efficiently.

5 Result and Future works
As it is shown in table 2, the size of ChipOS image
is 8K; the load time of ChipOS is less then 3 ms and
the average task switch time is 4.307 µs and the code
size of the switch routine is 390 lines of arm assembly
language. As the swtich procedure involves registers
modification and memory accesses, there are some de-
gree of latency. It proves that the The ChipOS based
gird computing makes use of the effective hardware
resources to provide improved coputing power. With
the ever-growing embedded system domain, more and
more computing resources of embedded system can
be used in scientific, engineering and society grid
computing projects. This architecture will be used and
improved in near future.

Acknowledgements: The research was supported
by the National Natural Science Foundation of China
under Grant No. 60673149 and the National High-
Tech Research and Development Plan of China
’Hardware-software Codesign of virtual FPGA’ No.
2007AA01Z105.

References:

[1] III Mooney, V.J. and D.M. Blough, A hardware-
software real-time operating system framework
for SoCs. Design & Test of Computers, IEEE.
Vol. 19, No. 6, Pages 44–51, 2002

Proceedings of the 7th WSEAS International Conference on Simulation, Modelling and Optimization, Beijing, China, September 15-17, 2007 175

[2] O. Ozturk, M. Kandemir, and I. Kolcu. Shared
scratch-pad memory space management. In
Quality Electronic Design, 2006. ISQED ’06.
7th International

[3] Banakar, R. and Steinke, S. and Bo-Sik Lee
and Balakrishnan, M. and Marwedel, P. Scratch-
pad memory: a design alternative for cache
on-chip memory in embedded systems. Hard-
ware/Software Codesign, 2002. CODES 2002.
Proceedings of the Tenth International Sympo-
sium on, Pages 73–78 6-8 May, 2002

[4] Ian Foster, Carl Kesselman, Steven Tuecke. The
Anatomy of the Grid: Enabling Scalable Virtual
Organizations. International Journal of High
Performance Computing Applications, Vol. 15,
No. 3, 200-222, 2001.

[5] Ian Foster, Carl Kesselman, Jeffrey M. Nick,
Steven Tuecke. The Physiology of the Grid: An
Open Grid Services Architecture for Distributed
Systems Integration. Open Grid Service Infras-
tructure WG, Global Grid Forum, June 2002

[6] Mark Baker1, Rajkumar Buyya, Domenico
Laforenza. Grids and Grid technologies for
wide-area distributed computing. John Wiley &
Sons, Ltd, 2002

[7] Danny Hughes, Phil Greenwood, Geoff Coul-
son, Gordon Blair. GridStix: Supporting Flood
Prediction using Embedded Hardware and Next
Generation Grid Middleware. Proceedings of
the 2006 International Symposium on on World
of Wireless, Mobile and Multimedia Networks,
2006

[8] Chen-Khong Tham,Rajkumar Buyya. Sensor-
Grid: Integrating Sensor Networks and Grid
Computing. CSI Communications, 2005 Our ar-
chitectural description

[9] Open Grid Forum, www.ogf.org
[10] Grid Computing Info Centre,

www.gridcomputing.com

Proceedings of the 7th WSEAS International Conference on Simulation, Modelling and Optimization, Beijing, China, September 15-17, 2007 176

