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Abstract: In the process of cointegration analysis, electricity consumption is chosen as the explained variable, 

and GDP per capita, heavy industry share, and efficiency improvement are chosen as the explanatory 

variables; then a cointegration model is put forward, which shows that there is a cointegration relationship 

between the explained variable and explanatory variables. The explained and explanatory variables are input 

into a support vector machine (SVM), and a Gaussian radial basis function is taken as the kernel function. So 

an electricity demand forecasting model based on multivariate SVM is established. The example provides 

evidence for the validity of the forecasting model. 
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1 Introduction
1
  

Electricity demand forecasting is the basis for 

electricity planning. Many scholars [1~5]
 
have 

applied econometrics to study electricity demand and 

its main determining factors is usually analyzed 

correctly in theory, but it is greatly affected by 

fluctuations in the sample data. A lot of non-linear 

programming and combinational forecasting methods 

such as fuzzy logic methods are applied widely in 

electric load forecasting. But results produced by 

fuzzy logic methods are quite difficult to express and 

set up, and the parameters are not easy to 

modulate[6,7]. A new machine learning technique 

called support vector machines (SVM) is not only 

helpful for solving problems involving small sample, 

devilish learning, high dimension and local minima, 

but also enables strong generalizability. So SVM can 
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be widely applied in electric load forecasting. some 

research [8~12] indicates that SVM has distinct 

advantages in electric load forecasting. SVM is 

seldom used in forecasting the electricity demand, 

and when it is, actual electricity consumption is 

taken as the only input variable of the SVM, while 

the major factors which impact electric power 

demand are not considered [13]. 

In this paper, a cointegration model from 

econometrics is applied to prove that GDP per capita, 

heavy industry share, and efficiency improvement 

are the key factors determining electricity demand. 

Taking these determining factors and actual 

electricity consumption as the input variables of the 

SVM, and selecting the rational kernel function of 

the SVM, the output variable of future electricity 

demand is obtained. 

 

 

2 Multivariate Cointegration Analysis 
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of Electricity Consumption  

 

2.1  Cointegration Theory 

Cointegration theory seeks to determine whether 

there is a stationary relationship among nonstationary 

economic variables, and whether there is a long-term 

equilibrium relationship among them. It avoids the 

disadvantages of unreliable regression results 

generated by spurious regression, and it can 

differentiate long-term stationary relationships from 

short-term dynamic relationships among variables. 

Before cointegration analysis came along, the 

combination of variables had to be stationary. The 

variable autoregression model, which includes g 

variables and k lags, is expressed as: 

µβββ tktkttt yyyy ++++= −−− ⋯
2211

 （1） 

Supposed all y
t
 are I(1); then a suitable 

transformation of equation (1) is made, and the error 

correction model is obtained as: 
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Matrix Π  is the coefficient matrix which 

reflects the long-term relationships of the variables. 

When the variables are in a long-term equilibrium 

state, the difference in the first variables of equation 

(2) is the zero vector, and E(µ t
)=0; so, 0=−y kt

Π  

when the variables are in a long-term equilibrium 

state, and this can be judged by calculating the rank 

and the eigenvalues of matrix Π .  

When all the endogenous variables are I(1), and 

when all the variables of y kt−Π  are I(0), the 

stochastic error term is a stationary process. If 

( ) gmRank <=< Π0 , there are matrices α  and 

β  such that βαΠ
T= , So equation (2) transforms 

into equation (3). 
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Each row of the matrix y kt−β
T  is a stationary 

combined variable, that is, each row is a linear 

combined form which enables the variables 

yyy
tgtt 1,1,21,1

,,, −−− ⋯  to be cointegrated.  

 

2.2  Explained and Explanatory Variables 

Lots of documents show that GDP plays the most 

important role in determining electricity 

consumption in China. Thus there is a positive 

correlation between electricity consumption and 

GDP. 

In China, the share of industrial electricity 

consumption is rising, from 71.75% in 2000 to 74.89

％  in 2006. Most of the electricity volume is 

consumed by heavy industry: in 2006 for example, 

electricity consumption by heavy industrial took up 

60.26% of all electricity consumption, and 79.71% of 

industrial electricity consumption. The breakdown of 

electricity consumption has been changing in China; 

electricity consumption by light industry increased 

1.87% and by heavy industry decreased 0.14% in 

2006. So the heavy industry share, or the ratio of 

heavy industry production value to gross industry 

production reflects changing industrial structure. 

As the science and technology level has steadily 

increased since 1997, the comprehensive social and 

technology level index rose 1.5% in 2006 to 47.11%, 

increased  in comparison with that of last year. 

Consequently, efficiency improvement plays an 

important role in electricity consumption; so the ratio 

of increase in industrial value to industrial electricity 

consumption is used to reflect efficiency 

improvement. 

So electricity consumption (Q) is chosen as the 

explained variable, and GDP per capita (PCGDP), 

heavy industry share (HIS), and efficiency 

improvement (EI) are chosen as the explanatory 

variables. The sample space is from 1985 to 2005，

and the impact of inflation is removed. 
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2.3  The Cointegration Model  

Because the economic variables in a time series are 

usually nonstationary, and there is neither 

randomness nor a definite tendency, the sample data 

should be transformed by taking the natural log so as 

to reduce vibration, and by taking the difference so 

as to eliminate instability and heteroscedasticity. 

Before cointegration analysis, the Augment 

Dikey-Fuller (ADF) test was applied to test whether 

a data series is stationary. The null hypothesis is that 

the data series is nonstationary. The test results are 

shown in Table1. (△ expresses the first order 

difference) 

 

In table 1 all the original values of the variables 

are less in absolute value than the ADF test statistic’s 

critical value at the 5% significance level; so we fail 

to reject the null hypothesis at the 5% significance 

level. But all the computed ADF test statistic values 

of the first difference of the variables are greater in 

absolute value than the ADF test statistic’s critical 

value at the 5% significance level, and so the null 

hypothesis is rejected at the 5% significance level, 

and so all the variables are I(1), and this meets the 

conditions for cointegration analysis. In other words, 

from 1985 to 2005, there may be a cointegration 

relationship between electricity consumption and the 

explanatory variables. 

The cointegration test needs to be run to find 

whether there is a cointegration relationship. The null 

hypothesis is that there is no cointegration 

relationship between electricity consumption and the 

explanatory variables. All the observed series contain 

a time trend; so, the cointegration test model contains 

the intercept and time trend. The results of the 

Johansen cointegration test are shown in table 2. 

 

The results in table 2 show that the Likelihood 

ratio of the first two eigenvalues is bigger than the 

critical value at the 5% significance level; therefore 

there is a long-term equilibrium relationship between 

electricity consumption and the explanatory variables. 

The normalized cointegration coefficients are shown 

in table3. 

 

So the cointegration function is stated as: 

LNEILNHI
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      (4) 

If the residual series of equation (4) is stationary, 

there is a cointegration relationship between 

electricity and the explanatory variables; otherwise, 

there is no cointegration relationship. So the 

Johansen cointegration test is run to test whether the 

residual series is stationary, and the test results are 

shown in table 4. 

 

The 5% critical value of the ADF test statistic is 
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-3.71; so, the computed ADF test statistic value of 

-4.01indicates that there are no unit roots in the 

residual series; that is, the residual series is stationary. 

So there is a cointegratoin relationship between 

electricity consumption and the explanatory 

variables. 

In equation (4) the coefficients of the 

explanatory variables are the elasticity of Q with 

respect to the explanatory variables. That is, a 1% 

increase in PCGDP leads to, on average, a 1.01% 

increase in Q, a 1% increase in HIS increases Q by 

0.13%, and a 1% improvement in EI decreases Q by 

0.86% on average. 

 

 

3  Multivariate SVM Model 

 

3.1  Regression Arithmetic of SVM 

Suppose )},(,),,(,),,{( 11 ppii yxyxyxT ⋯⋯= , 

where m
i Rx ∈  is the input variable, Ryi ∈ is the 

corresponding output value and p is the total 

number of the data points. Then the SVM regression 

function is: 

bxxf +Φ⋅= ))(()( ω           (5) 

where )(⋅Φ is a non-linear mapping function, ω  is 

a weight vector, and b is the error term. ω  and b  

are estimated by: 
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where C  is the punishment parameter, which is 

considered to specifies the trade-off between 

empirical risk and the model’s flatness. 
2||||

2

1
ω  is 

the normalization term. ))(,( ii xfyLε  is called 

the ε -insensitive loss function, which is defined as: 

)0,)(max())(,( εε −−= iiii xfyxfyL   (7) 

In equation (7) the loss equals zero if the 

forecasting error is less thanε ; otherwise the loss not 

less thanε . In order to represent the distance from 
actual values to the corresponding boundary values 

of the ε -band, two positive slack variables ξ  and 

∗ξ  are introduced. Then, equation (6) is 

transformed into the following constrained form:  
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This constrained optimization problem is solved 

by using the following Lagrangian form: 
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where *, ii ∂∂ are Lagrangian multipliers, and 

0* ≠∂−∂ ii i.e. corresponding data points are a 

support vector. By the Lagrange multipliers 

i∂ and *
i∂ calculated, an optimal desired weight 

vector of the regression hyperplane is obtained: 

∑
=

∂−∂=
p

i

iii xxK
1
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Hence, the regression function is: 

bxxKxf
p

i

iii +∂−∂= ∑
=1

* ),()()(      (11) 

where ),( xxK i  is called the kernel function. The 

value of the kernel function equals the inner product 

of )( ixΦ  and )(xΦ ，  which are produced by 

mapping ix and x  into a higher dimensional 

feature space; that is: 
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   ),(),( xxxxK ii Φ=           (12) 

 

3.2 Multivariate SVM Model  

For a univariate time series },,,{ 21 nxxx ⋯ , training 

sample sets, }{},,,{ 121 +→ mm xxxx ⋯ , 

}{},,,{ 2132 ++ → mm xxxx ⋯ ，⋯  are established.  
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Τ
++= ][ 21 nmm xxx ⋯Y         (14) 

},,,{ 11 −++ miii xxx ⋯  is the input vector, }{ mix +  is 

the output value. m  is the embedded dimension. 

Supposed that we have observed an l-dimensional 

multivariate time series:  
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N
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As in the case of a univariate time series, we 

make a state space reconstruction: 
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im  is the embedded dimension of i-th variable, 

li ,,2,1 ⋯= . The node quantity is the sum of the 

embedded dimensions in the multivariate time series, 

namely: 

 lmmmm +++= ⋯21           (17) 

 

 

4  Example 

 

4.1  Input and Output Variables 

The model (4) indicates that the PCGDP,HIS and EI 

are the determining factors of Q, and there is a long 

term equilibrium relationship among them. So 

PCGDP, HIS, EI and actual Q are input into the 

SVM. In order to eliminate dimensional diversity in 

the variations in each time series, data is normalized 

into the interval [0, 1]. 

 

4.2  Computing Results  

Comparing the results calculated by 4 kinds of kernel 

function, the following Gaussian radial basis 

function was applied in the SVM. 

)2||exp(),( 2σxxxxK ii −−=     (18) 

According to the principle of minimum error 

[14], let ε =0.0008, σ =3.5, and C=10000. The 

forecasted values of electricity demand are shown in 

table 5. 
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where 
∗
ix  is the actual value, and ix  is the 

forecast value. 

The mean absolute percentage error of the SVM 

forecast is 1.94%, and the maximum absolute 

percentage error is 3.74%. It is proved that a 

multivariate SVM model might enhance forecast 

precision effectively. 
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5  Conclusion 

Two conclusions are obtained:  

(1) There is a cointegration relationship between 

electricity consumption and the 3 explanatory 

variables in China; so, the 3 explanatory variables, 

GDP per capita, heavy industry share, and efficiency 

improvement, are determining factors influencing 

electricity consumption. 

(2) Taking GDP per capita, heavy industry share, 

efficiency improvement, and actual electricity 

consumption as the input variables, and selecting the 

Gaussian radial basis function as the kernel function 

of the SVM, we have shown that the forecast 

accuracy of the SVM model may be higher than 

other models’. 
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