
A Problem Solving Mechanism for Formal Analysis of Cryptographic 

Protocols 

 
JIHONG HAN, YU ZHAO,YADI WANG, ZHIYONG ZHOU 

 

Abstract: - The paper proposes the cryptographic protocol insecurity problem, gives an accurate formal 

specifications for cryptographic protocols, defines the security properties precisely and reasonably, presents 

some pivotal concepts and propositions in the deduction of the problem solving. The method has provable 

semantics which is reasonable and sound, and  it is easy to realize automatic deductions. 

 

Key-Words: - Cryptographic protocols, Formal method, Problem solving, Operational semantics, Secrecy,   

Authentication 

 

1  Introduction 
A cryptographic protocol is a precisely defined 

sequence of communication and computation steps 

that use cryptographic mechanism, its purpose is to 

ensure security properties in a hostile environment. 

Unfortunately many cryptographic protocols are 

found having security flaws, even in many years after 

they were first proposed. So, there has been an 

explosion of interest in formal analysis methods and 

automatic verification tools of these protocols. 

Researchers have used techniques from model 

checking, term rewriting, theorem proving and logic 

programming amongst others[1,2,3,4,5,6]. Much 

attention is paid to finding the existence of an attack, 

but few are concerned about how the attack is 

accomplished. In this paper,  we present a new formal 

approach for analyzing cryptographic protocols. Our 

purpose is automatically detecting and presenting 

attacks when they exist, especially for the parallel 

session attacks which often be ruled out in most finite 

models. 

An attack on the protocol is a particular 

instantiation of the protocol in which a malicious 

agent or an intruder can obtain information meant to 

be kept secret between other principals in the 

protocol. The problem of finding the attack sequence 

can be modeled as a protocol insecurity problem, and 

we can make the problem solved by AI problem 

solving theory   because problem solving is just the 

process of looking for a certain sequence of actions 

which will achieve some stated goal. 

 

 

2 The Cryptographic Protocol 

Insecurity Problem 
The cryptographic protocol insecurity problem can 

be defined as a  triplet Π=<InitStates, ActionsSet, 

Goals>  whose elements can be formulated as follow: 

InitStates= {s1∪s2 | s1∈InitStatesP, s2∈InitStatesI} 

is a set of initial states that express the knowledge 

each principal and the intruder have at the beginning 

of the protocol. InitStatesP is the initial states set of 

protocol  principals and InitStatesI  is  intruder’s. 

ActionsSet = ActionsSetP ∪ ActionsSetI is a set of 

actions that express the behavior of each principal 

and intruder in the protocol running. ActionsSetP and 

ActionsSetI are action sets for protocol and intruder 

respectively. 

Goals is a set of goals representing the insecure 

states in the cryptographic protocol. 

We regard the process of cryptographic protocol 

analysis as a problem solving process, If  the problem 

has a solution, namely a possible sequence of actions 

leading to a state in Goals can be found, then we say 

the cryptographic protocol is not secure, 

correspondingly the sequence of actions is just an 

attack scenario. 

In the cryptographic protocol insecurity problem, 

we don’t consider the path cost function, because all 

paths can be used to make the protocol fail. 

 

2.1 Syntax 
In our method, we use terms, knowledge, facts, 

states and rewriting rules to formulate cryptographic 

protocols, the syntax is given below:  

Term::= AtomTerm| CompoundTerm  

AtomTerm::= Var| Num| PName | Key| Nonce 

   Var::= a| b | k| i | r| m|n| x| y | z| authid|… 

    Num::= 0 | 1|2|…         

    PName::= A| B|C| S| T| I| Var |         …      

    Key::= symKAB|pubK A|privK A|…       

           Nonce::= Num| Var                

CompoundTerm ::= {Term}Key               

|[Term(,Term)*]                                                                                            

|Hash(Term)             

Knowledge::= {Term(,Term)*}             

Fact::= 

Await(PName,PName,Knowledge,Stepid,Sessionid) 

Proceedings of the 7th WSEAS International Conference on Simulation, Modelling and Optimization, Beijing, China, September 15-17, 2007      95



|Send(PName,PName,Term,Stepid,Sessionid)   

|Receive(PName,PName,Term,Stepid,Sessionid)      

|Shared(Term,PName, PName,…)                                                                     

|Inverse(Key,Key)| Intrude(Term)                                                 

|New(PName,Nonce)  

|Begin(PName,PName,authid(,Term) *)   

|End(PName,PName,authid(,Term)
 
*)                                                       

|Not Fact  

State::= {} , {Fact(,Fact)*}                                                                                                                     

Rewriting Rule  ::= PreCond → PostCond 

 PreCond::= {} , {Fact(,Fact)*} 

 PostCond::= {} , {Fact(,Fact)*} 

Here terms representing message of the protocol 

can be divided into atom terms and compound terms. 

Atom terms can be variables Var, numbers Num, 

principal name PName, keys and nonces. The key 

includes symmetrical shared keys and asymmetrical 

keys, e.g. symKAB is the secret key shared between 

principal A and B, pubKA is the public key of 

principal A, and privKA  is the private key of principal 

A. Compound terms can be cipher  {Term}Key  

generated by encrypting Term with Key, 

concatenation of terms [Term(,Term)*] and hash 

value Hash(Term). Fact Await represents that a   

principal waits message from the other, for example, 

Await(A,B,Knowledge,Stepid,Sessionid) means that 

principal B who possesses knowledge Knowledge 

waits message from A in the protocol session 

indicated by Sessionid and step indicated by Stepid. 

Fact Send represents that a principal sends message to 

the other, e.g. Send(A,B,Term,Stepid,Sessionid)  

means that principal A sends message Term to B in 

the protocol session Sessionid and step Stepid. Fact 

Receive represents that a principal receives message 

from some one else, e.g. 

Receive(A,B,Term,Stepid,Sessionid) means that 

principal A receives message from B. Shared 

(Term,PName, PName,…) represents that Term is a 

secret shared by some principals. Inverse(Key,Key) 

represents two keys constitute a pair of  public and 

private keys. Intrude(Term)  represents that Term is 

known by intruder. New(PName,Nonce) represents 

that a principle generates a nonce. Fact Begin and 

End represents the start and response of the 

authentication event. States are multisets composed 

by facts, and  rewriting rules can be used to describe 

the actions in cryptographic protocol running. 

 

 

2.2 Representation of protocol itself 
The protocol is represented by initial states set 

InitStatesP  and action set ActionsSetP. We can 

illustrate the formalizing method on the following 

Needham-Schroeder public key protocol: 

Step1.  A→B : {A,NA}pubKB 

Step2.  B→A : {NA,NB}pubKA 

Step3.  A→B : {NB}pubKB 

Each step in the protocol can be regarded as a  

series of  actions on certain conditions. For the Step 1, 

we have the following rules: 

Rule1={Await(i,i,{i,r,pubKi,privKi,pubKr},0,sid)}

→ {New(i,ni), 

Await(r,i,{i,r,ni,pubKi,privKi,pubKr},2,sid), 

Send(i,r,{[i,ni]}pubKr,1,sid), 

Begin(i,r,auth_ni,ni)} 

It represents that the protocol initiator i sends 

message {[i,ni]}pubKr to responder r, where ni is a 

nonce generated by i, Begin(i,r,auth_ni,ni) indicates 

that principal i initiates an authentication event with 

principal r. 

Rule2={Await(i,r,{r,i,pubKr,privKr,pubKi},1,sid), 

Send(i,r,{[i,ni]}pubKr,1,sid)}→ 

{Await(i,r,{r,i,pubKr,privKr,pubKi},1,sid), 

Receive(r,i,{[i,ni]}pubKr,1,sid)} 

It represents that the protocol responder r receives 

message {[i,ni]}pubKr  from initiator i. 

In the same way, we can obtain rules for the Step 2, 

and Step 3. Put all these rules together, we have the 

action set ActionsSetP. 

The initial state of protocol InitStatesP contains 

facts such as each principal knows his own name, 

public key and private key, he also know names and 

public keys of  other agents who he wish to 

communicate with. 

 

2.3 Representation of the intruder 
The intruder can be formalized by initial states set 

InitStatesI  and action set ActionsSetI. We still take the 

Needham-Schroeder public key as an example. The 

state of the intruder can be described by knowledge 

he possess at this moment, for public key protocols, 

the intruder’s knowledge at the beginning of protocol 

running include the identity, public key, private key 

of its own, and the identities and public keys of 

protocol principals, we can obtain  

InitStatesI= 

{ Intrude(I),Intrude(pubKI),Intrude(privKI), 

Intrude(A),Intrude(B),Intrude(C), 

Intrude(pubKA),Intrude(pubKB),Intrude(pubKC)} 

The abilities of the intruder can be characterized 

by rules. for instance, Rule  

{Send(a,b,m,stepid,sid)}  

→{Send(a,b,m,stepid,sid),Intrude(m)}  

represents the message forwarding, and rule 

{Intrude(m),Intrude(k)} 

→{Intrude(m),Intrude(k),Intrude({m}k)}     

represents message encrypting, etc. All the rules 

compose the ActionsSetI. 

Proceedings of the 7th WSEAS International Conference on Simulation, Modelling and Optimization, Beijing, China, September 15-17, 2007      96



 

2.4 Representation of  the goals 
The goals of the security problem for cryptographic 

protocols are insecure states which we want to 

search. Our interest mainly focuses on the secrecy 

and authentication of protocols. The goal violating 

the security properties can be defined as below: 

SecrecyViolation={Intrude(m), Not Shared(m,I,A), 

Not Shared(m,I,B)…}  

it means that the intruder has obtained the secret 

message m which he should not have. 

When analyzing the protocol’s authentication 

property, we adopt the Gavin Lowe’s idea[7]. If the 

protocol running can reach a state containing the 

fact End(a,b,authid(,Term)
*
) but no corresponding 

fact Begin(a,b,authid(,Term)
*
),  we say it violate the 

authentication property.  

 

 

3   The Operational Semantic 
When we solve the cryptographic protocol 

insecurity problem, two operations are mainly 

involved, they are rule application and rule 

unification. 

 

 

3.1 Rule application 

Definition 1(rule application) Let R=PreCond→ 

PostCond be a first order rewriting rule, s be a state, if 

there exits a substitutionΘ, satisfying ΘPreCond⊆ s, 

that is, ∀fact∈PreCond, Θfact∈s holds, then we say 

rule R can be applied to state s. The new state s ’ 

generated by the rule application can be defined as: 

s
’
=[R] Θ(s)=(s\ΘPreCond)∪ ΘPostCond 

={f | f∈s∧f∉ΘPreCond∨f∈ΘPostCond} 

When Θ is de-emphasis, [R] Θ(s) can be simplified 

as  [R] (s). 

Definition 2 (fact space) The fact space FS is the 

set of all facts in the security problem for 

cryptographic protocols Π. 

Definition 3 (state space) The state space SS is the 

set of all states in the security problem for 

cryptographic protocols Π. 

For any state s in the state space SS, if ∃f, f’∈s, 
and f=not f’, the we say s is insignificant. All 

insignificant states constitute the set Ω. 

Definition 4 (reachability)  Given a state s∈SS, s 

is reachable if there exists a sequence of action 

R1,R2,…,Rn ∈ActionsSet and substitutions 

Θ1,Θ2,…,Θn, n>0, satisfying 

s=[Rn]Θn(…([R2]Θ2([R1]Θ1(s0)))…), s0∈InitStates. 

R1,R2,…,Rn is called the path from s0 to s. s is n-step 

reachable if it is reachable and n is the minimum 

integer. 

Definition 5 (solvability)  For a security problem 

Π=<InitStates, ActionsSet, Goals>, if there exists 

state g∈Goals, and g is reachable, then Π can be 

solved,  and the paths are called solutions for problem 

Π. 

Definition 6 (solution space) The solution space 

Solutions is the set of  all solutions for problem Π. 

 

3.2 Rule unification 
Definition 7 (rule increment) For rule R=PreCond 

→PostCond and fact set F
’
⊆FS, if for any 

substitution Θ, ΘPreCond∪ F
’
≠Ω and ΘPostCond∪ 

F
’
≠Ω hold, then the rule R

’
= PreCond∪ F

’
→ 

PostCond∪ F
’ 
is defined as increment rule of R, and 

F
’ 
is the increment of form R to R

’
. Also we can write 

R
’
=R+F

’
 . 

The increment relation is self-inverse and 

transferable, that is, each rule is the increment rule of 

itself, if R1 is the increment rule of R2, R2 is the 

increment rule of R3, then R1 is the increment rule of 

R3. 

Proposition 1 If rule R1 is the increment rule of 

R2, and rule R2 can be applied to state s∈SS, then rule 

R1 can be applied to state s too, and [R1](s)=[R2](s).  

The Proposition can be proved according to 

Definition 7. 

Definition 8 (rule unification) Given rules 

R1=PreCond1→PostCond1 and R2= 

PreCond2→PostCond2, if R1 has increment rule 

R1+F
’
 , PreCond1∪F

’
 and PreCond2 are unifiable, 

and the unify of { PreCond1∪F
’
 , PreCond2 }is Θ, 

then rules R1 and R2 are unifiable, and the result of 

rule unification has the form of 

R1° R2=ΘPreCond1∪ΘF
’
→ ΘPostCond2 

Using rule unification through whole ActionSet, 

we can construct a more refined action set  
EActionsSet : 

(1) Choose any rule R from ActionsSet , if 
ER ActionsSet∉ , then add R into EActionsSet . 

(2) For any rule R’ in the ActionSet
E
, if R’ and R 

are unifiable, then add the resultant rule into 

ActionSet
E
, go back to (1). 

(3) When reaching a fixpoint, the process  

terminate. 

With the EActionsSet  , a new problem 
E

Π =<InitStates, ActionSet
E
, Goals> can be 

constructed, where InitStates and Goals are identical 

with the corresponding elements in the original 

problem Π. Solving problem E
Π is less complicated 

than  Solving Π because EActionsSet  contains less 

rules than ActionSet. If we can prove that problem 

Proceedings of the 7th WSEAS International Conference on Simulation, Modelling and Optimization, Beijing, China, September 15-17, 2007      97



E
Π  has solution iff Π has solution and two solutions 

are the same, complicated problem can be solved by 

transforming to a easier one. 

  Definition 9 (solution equivalence) Let P and P’ 

be security problems, when P can be solved if and 

only if  P’  can be solved and their solutions have 

some partial order relations, P and P’ have the  

equivalent solution.  

 Lemma 1 Assume R and R’  are unifiable rules, 

the resultant rule is R°R
’
 . rule R can be applied to 

state s∈SS if and only if R°R
’
 can be applied to s, and 

[R
’
]([R](s))=[R°R

’
](s). 

Prove  Let R=PreCond1→PostCond1, R
’
= 

PreCond2→ PostCond2, R°R
’
=ΘPreCond1∪ ΘF

’
→ 

ΘPostCond2.  

Sufficiency If R°R
’
 can be applied to s, according 

to definition 3, there exists a substitution θ, satisfying 

θ(ΘPreCond1∪ΘF
’
)∈s, so θΘPreCond1∈s, that 

means rule R can be applied to state s. 

Necessity  If rule R can be applied to state s, then 

according to proposition 3, Rule+F
’
 can be applied to 

state s too, that is, there exists θ
’
 , satisfying 

θ
’
(PreCond1∪F

’
)∈s. Let θ

”
=θ

’
⋅Θ

-1
 , then 

θ
”
(ΘPreCond1∪ΘF

’
) =θ

’
Θ
-1
Θ(PreCond1∪F

’
) 

=θ
’
(PreCond1∪F

’
)∈s, that means rule R°R

’
 can be 

applied to state s. 

[R
’
]([R](s))=[R

’
]([R+F

’
](s)) 

=[R
’
]((State\θ

’
(PreCond1∪F

’
))∪θ

’
(PostCond1∪F

’

)) 

=(((State\θ
’
(PreCond1∪F

’
))∪θ

’
(PostCond1∪F

’
))\ 

θ
’
PreCond2)∪θ

’
PostCond2 

=(((State\θ
’
Θ
-1
Θ(PreCond1∪F

’
)) 

∪θ
’
Θ
-1
Θ(PostCond1∪F

’
))\θ

’
Θ
-1
ΘPreCond2) 

∪θ
’
Θ
-1
ΘPostCond2) 

=(((State\θ
’
Θ
-1
Θ(PreCond1∪F

’
))∪θ

’
Θ
-1
ΘPostCo

nd2) 

=[Rule°Rule
’
](s)                                                 □ 

According to definition 5, definition 9 and lemma 

1, we can draw a conclusion that problems  Π 

and E
Π are solution equivalent. So we can refine our 

problem through rule unification. 

Applying our problem solving method, we can 

find an attack sequence corresponding to following 

attack[8]: 

(1) A→1
 I  : {A,NA}pubKI 

(2) I (A) →2
B : {A,NA}pubKB 

(3) B →2
 I (A) :{NA,NB}pubKA 

(4) I→1
 A  : {NA,NB}pubKA  

(5) A→1
 I  : {NB}pubKI 

(6) I (A) →2
B : {NB}pubKB 

where the superscript of → is the identifier of 

protocol sessions. 

 

 

4   Conclusion 
Based on problem solving theory, we propose a 

model for cryptographic protocols. The model can 

precisely formulate  cryptographic protocols and 

their security properties, it has reasonable and 

provable semantics. Combined the advantage of 

model checking and theorem proving, we believe that 

this method can provide new possibilities to analyze 

cryptographic protocols, and the security analysis of 

cryptographic protocols based on this model is 

reasonable and efficient.Direction for our furure 

work include efficient solving algorithm and 

automatic tool which can handle non-termination 

phenomena. 

 

References: 
 

[1] W.Marrero,E.Clarke, and S.Jha. Model checking 

for security protocols.Technical Report 

CMU-CS-97-139,School of Computer Science, 

Carnegie Mellon University, 1997. 

[2] Mitchell, J.C. Finite-state analysis of security 

protocols, in A.J.Hu & M.Y.Vardi, eds, 

‘Computer Aided Verification (CAV-98): 10
th
 

International Conference’, Vol. 1427 of LNCS, 

Springer, 1998, pp. 71-76. 

[3] Paulson, L. C. The inductive approach to 

verifying cryptographic protocols. Journal of 

Computer Security 6, 1-2, pp. 85–128, 1998. 

[4] C. Sprenger, M. Backes, D. Basin, B. Pfitzmann, 

and M. Waidner. ,  Cryptographically sound 

theorem proving. in Proceedings of 19th IEEE 

CSFW, 2006. 

[5] C.Meadows, The NRL protocol analyzer: an 

overview. Journal of Logic Programming, 26(2), 

pp 113-131, 1996. 

[6]B. Blanchet. An efficient cryptographic protocol 

verifier based on Prolog rules. In Procceedings of 

14th Computer Security Foundations Workshop 

(CSFW’01), IEEE, 2001, pp. 82–96. 
[7] Lowe G. A Hierarchy of Authentication 

Specifications. In Proceedings of the 10th 

Computer Security Foundations 

Workshop(CSFW’97), Rockport, Massachusetts, 

1997. 

[8] G.Lown. Breaking and fixing the 

Needham-Schroeder public-kry protocol using 

FDR. In Proceedings of TACAS, volume 1055 of 

Lecture Notes in Computer Science, 

Springer-Verlag,1996. pp 147-166. 

 

Proceedings of the 7th WSEAS International Conference on Simulation, Modelling and Optimization, Beijing, China, September 15-17, 2007      98


