Proceedings of the 7th WSEAS International Conference on Distance Learning and Web Engineering, Beijing, China, September 15-17, 2007 326

A Multi-Agent System Approach for User-Session-Based Testing of
Web Applications

MOHAMMADREZA MOLLAHOSEINI ARDAKANI
Department of computer engineering
Islamic Azad University — Maybod Branch, Iran

MOHAMMAD MOROVVATI
Department of computer engineering
Islamic Azad University — Ardakan Branch, Iran

Abstract: Web applications are becoming increasingly complex and yet important for companies. As web
applications become more and more prevalent, their testing and quality assurance become more and more
important and crucial. Due to the complexity of the underlying technologies of web applications, testing of
such softwares is challenging.

Applying user sessions data as test cases can reduce the cost of regression testing process. In this paper we
provide a multi agent software environment in order to support automatic replay of user sessions. In this
environment different agents can perform replay of user sessions by being distributed on various platforms and

geographic locations.

Key-Words: Web Application, Multi-Agent, User session, Software Testing

1 Introduction

The Internet and web are becoming a distributed
platform that provide new ways for developers in
order to use softwares. Web applications are
typically software systems that are accessible over
the web, interacting with the user through an internet
browser. Web applications require the presence of
web server in simple configurations and multiple
servers in more complex settings. Such applications
are more precisely named web-based applications.
The use of web applications is increasing rapidly.
Nowadays most of the business companies trade
online. Universities and different academy centers
perform most of their activities such as registration,
financing, etc through internet. In a sense, applying
the web application is to facilitate and speed up the
tasks and their utilizations are inevitable in our daily
lives.Therefore, test and quality assurance of these
softwares is needed and necessary.

Web applications have special characteristics
such as evolutionary life cycle and rapid updating.
They often use a diversity of information
representation formats and execution platforms.
Their components can be developed using various
techniques and can be written in different languages.
These characteristics have caused many problems in
their testing and made traditional software
techniques and tools ineffective and impractical.

Applying the user session as test cases is one of
the useful and inexpensive ways in web application
testing. Related data to the user sessions may be
relevant to different users in different geographic
areas that have used various platforms at similar or
different times.

Therefore, by automation of replay user sessions
on corresponding software platforms and geographic
locations, we can make the newly obtained results
more reliable during comparison with previous
results. We can also replay these sessions in parallel
ordering.

For this purpose in this paper we provide a multi
agent software system for automating replay of user
sessions. In this system several cooperative agents
with coordination of management agents accomplish
replay of user sessions.

The remainder of the paper is organized as
follows. In the next section we briefly describe
related work on validating web software. Section 3
reviews some of the web application testing
techniques that are bases of the paper. Section 4
presents details of our proposed approach. Section 5
presents a prototype system of the approach. Section
6 discusses the summary of paper and comments on
future work.

2 Related work on validating web

software

So far many techniques have been offered for testing
of web softwares. Some of these techniques can be
categorized in the white box testing techniques such
as Ricca and Tonella's [7] approaches. One limiting
factor in the use of these techniques is the cost of
finding inputs that exercise the system as desired.
Selection of such inputs is slow and must be
accomplished manually.

In recent years, agent oriented software
engineering (AOSE) has emerged new discipline for
modeling and designing cooperative, intelligent and
autonomous agents. By using software agents in
software testing processes in general, and web
application testing in particular, we can provide
useful and effective solutions in this context, so as to
facilitate the testing process and to reduce the costs
of test and maintenance phases which are very
expensive in software development process.

Kung [6] offered a framework based on BDI
agent and unified modeling language (UML). By
regarding this point that the web applications consist
of heterogeneous documents, he employed different
types of test agents for different types of web
documents.

Huo et al.[S] proposed a multi agent software
environment for testing of web applications. In their
proposed environment, each agent with its special
capability can perform the given tasks. They have
shown this information in a software testing
ontology.

3 Web application testing techniques

3.1 User-session-based techniques

A web application generally encompasses a set of
static and dynamic web pages. Based on user
requests and server state, the web application
generates dynamic responses. Changing user
profiles and frequent small maintenance changes
complicate automated testing. Using the white box
testing techniques of web applications cost a lot to
produce test cases.

User-session based techniques can help with this
problem by transparently collecting user interactions
and transforming them into test cases. The
techniques capture and store the clients' requests in
the form of URLs and name — value pairs, and then
apply strategies to these to generate test cases. Each
user session is a collection of user requests in the
form of URL and name-value pairs (i. e., form field
names and values). More specifically, a user session

Proceedings of the 7th WSEAS International Conference on Distance Learning and Web Engineering, Beijing, China, September 15-17, 2007

begins when a request from a new IP address
reaches the server and ends when the user leaves the
web site or the session times out. To transform a
user session into a test case, each logged request of
the user session is changed into a HTTP request that
can be sent to a web server. A test case consists of a
set of HTTP requests that are associated with each
user session. Different strategies are applied to
constructs test cases for the collected user sessions
[3]. Capture/replay for web application is relatively
cheap Compared to other test domains.

Elbaum et al [2] provide promising results that
demonstrate the fault detection capabilities and cost-
effectiveness of user session techniques improves as
the number of collected sessions increases.
However, the cost of collecting, analyzing, and
replaying test cases also increases.

Sampath et al [8] presented an approach to
achieve scalable user session-based testing of web
applications. They view the collection of logged
user sessions as a set of use cases where a use case
is a behaviorally related sequence of events
performed by the user through a dialogue with the
system.

A complicating factor for user session-based
techniques involves web application state. When a
specific user request is made of a web application,
the outcome of that request may depend on factors
not completely captured in URL and name value
pairs alone; for example, the university registration
online system depending on the number of
registered students in one course unit may function
differently.

3.2 Agent-based techniques

In the last few years agent based techniques have
become very popular. The agent's capabilities can be
used in software testing process and especially in
web applications testing. Up to now, few techniques
based on agents have been introduced for testing of
web applications. The bases of our proposed
approach are mentioned at [5], Therefore we are
going to review them briefly.

Huo et al [5] formed a multi agent software
environment for testing of web applications. In this
environment, in general, two types of agents have
been implemented for testing of web applications.
First, test service agents with special capability each
that can perform different testing tasks .The other,
broker agents with responsibility of scheduling and
assigning of testing tasks to other agents. figure 1
shows the primary structure of such system.

327

Test service agents Broker agents
© © -
©

| Message mechanism layer |

7'y

2 Network v

OS/computer |<—>| OS/computer

Figure 1. The primary structure of system: proposed
by Huo et al.

They have utilized a software testing ontology to
enable the flexible integration of agent into the
environment and the effective communications
between agents and among human testers and
agents. The ontology is used as the content language
for software agents to register into the system with a
capability description, for human testers and agents
to make testing requests and report testing results,
and also for management agents to allocate tasks to
test service agents. They have already presented
some relations and concepts in this ontology, such as
agent capability and testing task by using BNF
representation and XML schema.

In their prototype system, each testing service
agent fulfills a specific activity such as test case
generation and test case execution. Test case
generator agents mostly utilized the extension of
traditional white box testing techniques.

4 The proposed approach

As mentioned in section 3, one of the useful and cost
effective ways for web applications testing is
applying user sessions as test cases. The application
of Lehman's theory of software evolution to web-
based applications shows that they are by nature
evolutionary and, hence, satisfy Lehman's laws of
evolution[11]. The essence of web applications
implies that supporting their sustainable long term
evolution should play the central role in developing
quality assurance and testing techniques and tools.
Keeping this feature in mind, the regression testing
is considered as one of the most highly used test
contexts for web applications. Some times, as a
result of modifications that made in a web
application, the server response (the result of web
application code process) shouldn't change when we
replay a certain group of previous user sessions. In
other words, the newly made change(s) have no
effect on the previous user session's operation.
Therefore, automation of replay of user sessions and
verification of equality or inequality of current
results in comparison to the previous or excepted

Proceedings of the 7th WSEAS International Conference on Distance Learning and Web Engineering, Beijing, China, September 15-17, 2007

results is one of the major challenges in user

session-based testing. The Application of Software

agents, especially mobile agents, can provide
effective and promising solutions in this field.

We know that user sessions may occur in various
platforms and at different times. That is, the
different users can utilize different platforms for
operating single web application as concurrent or
non concurrent. The platform differences are often
due to incompatibility in software platforms that are
applied by users, i.e. type, configuration and version
of user's operating system or internet browser. In
addition to platforms differences, some times, time
restrictions, as well as geographic location of a user
who operates the web application may have an
effect on the received web application responses too.
Therefore, better comparison results can be obtained
if user sessions are replayed on previous user-
software- platforms in similar geographic locations
and time slots. Moreover, by utilizing agent
capabilities we can replay the user sessions as
parallel, sequential and any other desired ordering.

For this purpose we can implement some agents
that can be distributed on different computers at
different geographic locations on intranet or internet.
Each agent has especial capability(s). Concepts of
agent capability and testing task here differ from
those offered at [5].

In our approach the agent capability can include
the following instances:

. Platform or platforms that an agent will be
able to replay the user sessions on top of
them. (we name these platforms as supported
platforms)

. The geographic area in which agent is located.

We can briefly say that, a festing task determines
within what platform and even at what time an agent
must replay the delivered user session.

S Prototype system

To demonstrate the feasibility and capability of our
proposed approach mentioned above, we designed
and implemented a prototype system to automate
failure detection of web applications by replaying
user sessions.

As shown in figure 2, the system consists of a
number of agents. They cooperate with each other to
replay user sessions and report failure detection,
automatically. The agents can be mobile and agent
society is dynamically changing; new agents can be
added into the system and old agents can be replaced
by a newer version.

328

Communication mechanism in this system is
based on the mailbox scheme [1,4]. Generally, a
mailbox is an unbounded buffer of messages. The
mailboxes also can be mobile. Each agent has an
individual mailbox. An agent can direct a message
to another agent's mailbox, and the receiving agent
uses a push or pull operation to obtain the message
from the mailbox.

Interagent communication thus consists of two
distinct steps:

. Transmission of a message from the sender to
the receiver's mailbox, and
o Delivery of the message from the mailbox to

its owner agent.

We can use the theory of speech act [9,10] in
order for agents to clearly express the intention of
exchanged messages between themselves. For
example, an agent's capability transmission message
differs from a replay result transmission message.
Among the seven parameters of speech act, three of
them are more applicable in our proposed system,
which are:

ASSERTIVE: agent claims its capability to
Broker or agent sends his results of testing task.

EXPRESSIVE: agent describes a testing task to
be implemented by others.

DIRECTIVE: broker assigns a task to an agent.

Generally, there are three groups of agents in this
system that the summary discussion on their
functionality is as follows:

o Interface agents that perform as user interface
and get the replay command from human
testers and deliver to tester the results of
replay user sessions.

o Failure detection agents that themselves
divide to two classes:

1. Test Oracle agents generate expected
output, which can be utilized to determine if
the system is executing properly during
testing process. These agents also compare
the actual results of the system under test to
determine test case success.

2. Replay agents automate the replay of user
sessions that are situated in USDB. These
agents send URL requests and name-value
pairs to the web server and collect the
server's responses, which the test oracle
agents use.

. Broker agents manage other agents and are
responsible for the analysis of user sessions,
registration of agent's capabilities, task
scheduling, and monitoring and recording
agent's states. These agents are implemented
to negotiate with other agents to assign and

Proceedings of the 7th WSEAS International Conference on Distance Learning and Web Engineering, Beijing, China, September 15-17, 2007

schedule testing tasks, e.g. replay command of
user sessions. Each broker manages a registry
of other agents and keeps a record of their
capabilities and performances. Broker agent
stores this information in a knowledge base.
In this system, each agent registers its
capabilities to the brokers when joining the
system.

Agents are adaptive, and they can adjust their
behaviors based on environment changes. Agents
must be able to move within heterogeneous
networks of computers. This is only possible if there
is a common framework for agent operations across
the whole network: a standardized agent
infrastructure. This infrastructure must offer basic
support for agent mobility and communications.
Aglets can be effective for this goal. It is a java
based mobile agent platform and library for building
mobile agents based applications. An aglet is a Java
agent which can autonomously and spontaneously
move from one host to another carrying a piece of
code with it.

USDB can be considered as reduced test suite that
is proposed at [8] (of course by adding header
information such as previous location and platform
of user sessions) that are produced by applying the
concept analysis tool.

Broker agent also stores some of the relations as
basic fact in the knowledge base. These information
(agent's capabilities) and relations are bases of the
broker's decisions when he wants to choose the most
suitable agent for replaying a user session. The most
important of these relations consist of:

(A) Enhancement relation between platforms: A
platform A is an enhancement of platform B, if a
testing task can be performed in platform B implies
that it can also be performed in platform A. Assume
that an enhancement relation is defined on software
and hardware components. The enhancement
relation between platforms can be defined formally
as fallows. Let platforms A and B consist of
sets {al,az,...,an} and {bl,bz,...,bm} of hardware and

software components, respectively.
A is an enhancement of B, if and only if for all
bi,i =1,2,...,m there is one component a; e

{al N p— }such that a;is an enhancement of b,.

This relation is partial ordering. That is, this is
transitive, reflexive and asymmetric.

(B) Match relation between a testing task and
agent capability: In the assignment of a testing task
to an agent, a broker agent must answer the question
whether the testing task matches the capability of
the agent.

329

Proceedings of the 7th WSEAS International Conference on Distance Learning and Web Engineering, Beijing, China, September 15-17, 2007

................. ﬂ &
_. X}

R

Replay agents

............

&)
2

Web - I
Application m @
Under testing

(or Intranet)

Replay agents

Internet

e ° =

Test oracle agents /\}7 '7»@
esssssssssssssssssssssssssssssasssssnnnnnnd Qv., Area1

broker agents

g\@@

Replay Command

:

Interface agents

Different Platform

Different Area
[ueod

=

Failure Detection Report

Fig.2 System structure

For example, assume that a replay agent with
capability C is registered as capable of replaying
user sessions on platforms p,, p, ... p, . Also assume

that a testing task T is requested for replaying a user
session US that previously occurred on platform p, .

The broker agent needs to infer that the replay
agent is capable of fulfilling the task. We can say
that the replay agent is capable of replaying the user
session US, or in other words we can say that
capability C matches task T, if and only if both
following conditions are true:

. Capability C and testing task T have the same
geographic location. (The replay agent is
located in the same area that US has occurred
previously)

© P EPLPyPa

However, if broker agent can't find an agent that

satisfies second condition in the match relation, it

inevitable tries to find an agent such that:

< Enhancement of p;, > € {pl,pz,...,pn }

Now we present a prevalent scenario between
replay and broker agents. Broker B is considered as
management agent. Assume that agents 4. 4,,..4

are responsible for replaying user sessions. We are
going to replay a user session that is named US.
1) The Agents4,4,..4 register

capabilities to the broker B when joining the
system. This function can be implemented by

their

n

sending ASSERTIVE messages with
<capability> parameters from replay agents to
broker B.

2) The broker searches its knowledge about
registered agents, and finds that agent 4,,

d<m<ny is the best match for replaying US.

It then sends a DIRECTIVE message with the
<task> parameter to agent 4,,

3) Agent 4, replay this session with regards to

its current platform and the available

information in <task> parameter, that is:

e If its current platform is conformed to the
platform that is inserted into the <task>
parameter, it will replay the US in the
same platform. Otherwise,

e It chooses most suitable platform for
migration and will accomplish the replay
of US in new platform (new host).

Note that with cooperation of relay and oracle
agents a message is sent with <answer> parameter to
the broker. This message determines the result of

replaying US. If agent 4, was not able to replay the

US for any reason, then broker tries to find another
agent for replaying US and then assign this task to it.

It is also important to note that broker agent
always chooses the most suitable agent with
minimal cost for replay of a given user session.
Many factors can be involved in this operation, for
instance: geographic location, supported platform
and current platform of each agent.

Example 1. In the simplest case consider that
there are four agents in the system that we name A,
A,, A;, and A, We are going to replay a user
session named US that previously occurred in
platform P, and geographic location L;. Suppose
that only three factors mentioned above are
interfering in the replay agent selection. Table 1
shows the capabilities of these agents.

330

With referring the table it is obvious that, among
these four agents only the agents A; and A, are
suitable for replay US.

Among these two agents, the broker agent
chooses agent A, as the most suitable agent, because
the current platform of agent A, is P;, hence, this
agent must migrate to platform P, to replay US and
agent migration is an overhead. However, if agent
A, did not exist before or it was not able to replay
US for any reason after selection, the broker agent
will have to deliver replay of US to agent A, .

Table 1. Capability of replay agents.

Agent | Geographic | Supported | Current
Name | Location | platforms | Platform
Al Ll P 1 ,Pz Pz
A, L, P,,P; P;
Az L, P;,Py P,
A4 L, P,,Py P,

6 Conclusion

The essence of evolutionary and the short interval
between different versions of web application have
caused considerable increase in maintenance phase
duration and cost of such softwares.

Replaying subset of user sessions and comparing
their results to the expected results is a way to find
new faults. Diversity of platforms and geographic
locations in which user sessions have occurred
previously will motivate us to replay user sessions in
similar platforms and geographic areas. Also, the
frequent replaying of user sessions in maintenance
phase requires an environment to automate this
operation.

This paper presented an application of multi-
agent system to satisfy the mentioned requirements.
It clearly demonstrated that software agents are
convenient solution in automating replay of web
applications to detect new faults. We have designed
and implemented a prototype system based on a
multi-agent system to facilitate the replay process.
Obtained results of preliminary experiments with the
prototype have shown promising success of the
system.

As future work, this system can be extended to
consider in detail and more precision the state of
web application and time dimension of user sessions
and other involved factors. We think that this work
is possible by adding new responsibilities to the
current broker agents or creating new broker agents.

Proceedings of the 7th WSEAS International Conference on Distance Learning and Web Engineering, Beijing, China, September 15-17, 2007

References:

[1] Cao, J. et al, September 2002, Mailbox-based
Scheme for Mobile Agent Communication,
Computer, pp 54-60.

[2] Elbaum, S. et al, 2003, Improving Web
Application Testing with User Session data. In
ICSE '03, IEEE transaction on software
Society.

[3] Elbaum, S. et al, May 2005, Leveraging User
session data to Support Web Application
Testing, [EEE Transaction on Software
Engineering.

[4] Huo, Q., and Zhu, H., Sep. 2000, A Message
Communication Mechanism for Mobile Agents,
In proceeding of CACSCUK'2000,
Loughbrough, UK.

[5] Huo, Q. et al, 2003, A Multi-Agent Software
Environment for Testing Web-based
Applications, In proceeding of COMPSA'03,
Dallas, PP. 210-215.

[6] Kung, D., September 30, 2004, An Agent-based
Framework for Testing Web Applications, /n
Proceeding of First International Workshop on
Quality Assurance and Testing of Web
Applications, Hong Kong, IEEE Computer
Society Press.

[7] Ricca, F. and Tonella, T., May 2001, Analysis
and Testing of Web Applications. In
Proceeding of the International Conference on
Software Engineering, page 25-34.

[8] Sampath, S. et al, September 2004, A Scalable
Approach to User- session based Testing of
Web Applications through Concept Analysis, In
Automated Software Engineering Conference.

[9] Singh, M.P., 1993, A Semantics for Speech
Acts, Annals of Mathematical And Artificial
Intelligence 8(1), pp 47-71.

[10] Singh, M.P., Dec. 1998, Agent Communication
Languages: Rethinking the principles, IEEE
Computer, pp 40-47.

[11] Zhu, H. et al, September 30 2004, Developing
A Software Testing Ontology in UML for A
software Growth Environment of Web-based
Applications, To appear in Software Evolution
with UML and XML, Hongji Yang(eds.)

331

