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Abstract: In this paper, we propose a novel approach for single channel speech enhancement by exploiting the cor-
relation among 2D transform coefficients, which has been previously neglected by traditional speech enhancement
methods. Our approach makes use of a time-frequency representation (spectrogram) of the input signal and a novel
2D spectrogram filter (2DSF)is designed to provide a good estimate of the original clean speech. The 2DSF, which
is easy to implement, comprises a hybrid Wiener filter, statistical classification and a postprocessor. The efficiency
of our proposed approach is proven via both objective and subjective evaluations.
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1 Introduction

Speech enhancement is not just a research area for
academic but is also readily exploited in industrial ap-
plications. As we cannot avoid the situation of speak-
ing in a noisy environment in the real world, speech
enhancement technique is needed to eliminate the an-
noying background noises. The purpose of speech en-
hancement is to ensure speech intelligibility and alle-
viate listening fatigue. The problem is made tougher
in the case of single channel speech and especially
when high quality is required even under a low in-
put signal-to-noise ratio (SNR). Many researchers are
thus devoted to work on this problem in order to
improve the performance of the enhancement tech-
niques.

Generally, spectral subtractive algorithm is sim-
ple and sufficient in applications which require lower
quality enhanced speech outputs. Wiener filter is an-
other commonly used estimation method to achieve
resultant speech with minimum mean square error.
Both these methods operate in the frequency domain
and are relatively efficient especially in noise removal
in the noise-only period given that speech is not con-
tinuously present at all times. However, these two
conventional methods and other traditional techniques
assume there is no relationship between the different
frequency coefficients. Research results from Evans
[1] show that correlation exists among different time
frames. By adopting image processing techniques,
Evans has applied the morphological filter, the open-
ing operator with erosion and dilation, to the 2D time-

frequency arrangement of the input speech signal [1].
This purely 2D processing algorithm achieves good
result despite the fact that it does not exploit the spe-
cific features of speech spectrogram. According to the
characteristics of speech spectrogram, Goh [2] pro-
posed a spectrogram filtering algorithm, so does Z.
Lin [3], for better performance. But these methods
tend to be postprocessors which must follow some
classic noise reduction techniques, such as MMSE or
spectral subtraction.

As for our proposed approach, we adopt a more
unified 2D spectrogram filter based on the work of
Soon [4] and Goh [2]to solve the spectral filtering
problem. First, the hybrid Wiener filter [4], consisting
of 1D Wiener filter and 2D Wiener filter, is used to
remove the noises from the spectrogram. Next a more
efficient statistical classification technique is adopted
to distinguish speech component from non-speech
component, the latter is marked for further process-
ing. Finally a blade postprocessor [2] maintains those
low-energy speech components which have been erro-
neously classified as non-speech components and fur-
ther suppress isolated musical tones. The proposed
approach is evaluated by objective measure and infor-
mal subjective measure which show that it is superior
to both the former algorithms.

2 Methodology
First, short-time Fourier transform is performed on the
noisy speech to facilitate the time-frequency analysis
and the generated spectrogram is filtered by the hy-
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Figure 1: Block diagram of the 2DSF Algorithm

brid Wiener filter. We then utilize a statistical classifi-
cation approach to differentiate the speech component
from the non-speech component to improve the algo-
rithm’s efficiency before a postprocessor is applied.
Fig. 1 shows the overall block diagram of the 2DSF
approach which is very simple and easy to implement.

2.1 Short-time Fourier Transform
The clean speech signal x(m) is corrupted by inde-
pendent additive noise signal n(m), resulting in the
noisy speech signal y(m), described as follows in the
time domain

y(m) = x(m) + n(m) (1)

The spectrogram used in our time-frequency anal-
ysis is obtained from the short-time Fourier transform
of noisy speech. The input signal is multiplied by a
window function, such as the Hanning window with
a frame size of 256 and with 75% overlap. Thus,
the one-dimensional Fourier transform of each win-
dow forms a column vector of the 2D matrix with the

horizontal axis representing the time and the vertical
axis representing the frequency. The intensity of each
point in the 2D representation is the speech energy at
the given time and frequency. The noisy speech can
be expressed in the time-frequency domain as

Y (u, v) = X(u, v) + N(u, v) (2)

where u is the time frame index and v is the frequency
index. Y (u, v), X(u, v) and N(u, v) indicate the
complex frequency expressions of the noisy speech,
clean speech and noise signal, respectively. As we all
know, the complex number Y (u, v) can be expressed
as a product of magnitude and phase as shown in Eq.
(3). The magnitude of this 2D representation maps to
the spectrogram, and the phase information should be
preserved for future operation.

Y (u, v) = |Y (u, v)| exp (jφY (u, v)) (3)

2.2 Hybrid Wiener Filter
The noise is first filtered off by the hybrid Wiener fil-
ter from the spectrogram. The reason for calling the
filter hybrid is that it consists of two types of Wiener
filter, namely, 1D and 2D. The combination of these
two parallel channels lead to an impressive result.

The popular 1D Wiener filter [5] is based on the
a-priori SNR ξ(u, v) which satisfies

W1D(u, v) =
ξ(u, v)

ξ(u, v) + 1
(4)

The a-priori SNR can be estimated by the well-known
decision-directed approach, explained in [6]. The
enhanced spectrogram is estimated from the noisy
speech magnitude by the 1D Wiener filter:

|X̂1D(u, v)| = W1D(u, v)|Y (u, v)| (5)

The 2D Wiener filter exploits the 2D correla-
tions independently without attenuating the coeffi-
cients in contrast to some traditional noise reduction
techniques. For the purpose of explaining the algo-
rithm, a 2D noise model should be introduced first.
An AC component and a DC component comprise this
noise model:

|N(u, v)| = NAC(u, v) + NDC(u, v) (6)

where NDC(u, v) = E[|N(u, v)|], E[.] denotes the
expectation function. The following local information
at (u,v) is also needed for the 2D Wiener filter:

• Local mean |Y (u, v)|
• Local variance of noisy speech σY (u, v)2
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• local variance of AC noise component
σNAC

(u, v)2

All these values can be computed within a small re-
gion at the center of (u,v), for example, a scope of 3
by 3 square. The 2D Wiener filtered speech [4] can
thus be described as follows:

|X̂2D(u, v)| =
σY (u, v)2 − σNAC

(u, v)2

σY (u, v)2

×
(
|Y (u, v)| − |Y (u, v)|

)
+ |Y (u, v)| − NDC(u, v) (7)

If further noise suppression is required, an iterative
step can be implemented in the 2D Wiener filter to
repeatedly reduce the noise for the desired situation.

The hybrid Wiener filter just simply extracts the
minimum value of the 1D and 2D Wiener filter as the
output spectrogram magnitude:

X̂(u, v) = min
(
|X̂1D(u, v)|, |X̂2D(u, v)|

)
(8)

2.3 Statistical Classification
Although the residual noise is low after the hy-
brid Wiener filtering, the resulting spectrogram still
needs further processing by the postprocessor. A
speech/non-speech classification should be imple-
mented first for the postprocessor according to [2].
The mentioned method works on the histogram of the
spectrogram, which is too time-consuming and diffi-
cult for the classification decision to be made when
the discriminating feature is not obvious. Therefore,
a more efficient statistical approach is adopted here
to benefit the postprocessing process. The classi-
fied speech component will be preserved and the non-
speech component will be filtered by the postproces-
sor.

In this paper, this statistical classification ap-
proach is proposed as an estimator of probability of
speech absence. Reference [7] provides the detail
derivations. Considering the two classes, non-speech
component H0 and speech component H1, the maxi-
mum likelihood of obtaining the magnitude of a noisy
speech is shown in Eq. (9) and Eq. (10). The
magnitudes of noisy speech |Y (u, v)|, clean speech
|X(u, v)| and noise signal |N(u, v)| are simply de-
noted as AY , AX and AN respectively.

P (AY |H0) =
2AY

E[A2
N ]

exp
(

A2
Y

E[A2
N ]

)
(9)

and

P (AY |H1) = 2AY

E[A2
N ]

exp
(
−A2

Y +A2
X

E[A2
N ]

)
×I0

(
2AY AX

E[A2
N ]

)
(10)

I0 indicates the zero order modified Bessel function.
In the case of P (Y (u, v)|H1) > P (Y (u, v)|H0), the
point of consideration is either classified as the speech
component marked with 1, or as the non-speech com-
ponent marked with 0. The discriminating function is
shown in Eq. (11).

exp
(
−ξ̂(u, v)

)
I0

(
2

√
A2

y

E[A2
N ]

ξ̂(u, v)

)
> 1 (11)

The outcome of this process is a binary spec-
trogram. As the residual noise will be further sup-
pressed, a technique, such as median filter, should
be applied to the binary spectrogram to get an over-
suppressed spectrogram, which confirms the speech
presence class. Meanwhile, the speech absence class
is not exactly accurate, since some speech compo-
nents with low energy may have been erroneously
classified as noise. It is intuitive to therefore apply
a postprocessor on the speech absence class to reduce
the annoying residual noise, while let the misclassified
speech components untouched.

2.4 Blade Postprocessor
As mentioned above, the blade postprocessor aims to
further process the non-speech component while re-
taining the speech component. First of all, we should
observe the shapes of the residual noise and speech
components when choosing a suitable postprocessor.
Clear distinctions, namely, isolated peaks and short
ridges in contrast with long ridges paralleled with val-
leys, are observed from the filtered spectrogram.

The postprocessing method is proposed in [2] to
attenuate the residual musical noise, especially for the
short, ridge-like noise which poses an obstacle for
some other time-frequency postprocessors such as the
one in [5]. The main contribution of this blade post-
processor is the definition of 16 blades which are ac-
tually the 16 orientations with respect to a given point
(referred to as the central point). These blades are il-
lustrated in Fig. 2. Each blade consists of 7 points,
inclusive of the central point, and is used for the com-
putation of variance. The blade with the minimum
variance among the 16 values is selected to represent
the class attributes of the central point. This means
the median value of this blade is used to replace the
original value of the central point, if the median value
is not larger than the existing magnitude at the central
point. Otherwise, the value of the central point will
not be altered. The postprocessed spectrogram is thus
as follows.

X̂(u, v) = min

(
X̂(u, v), median

(m,n)∈ �Bmin(var)

(
X̂(m, n)

))

(12)
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Figure 2: Sixteen blades of the different directions

where �B represents a blade of a central point, and
�Bmin(var) is that certain blade with minimum variance
among the 16 blades.

By the selective replacement of the spectrogram
magnitude with the median value of the minimum-
variance blade, isolated noise points are effectively
suppressed; while the speech points which are pre-
viously misclassified are unchanged or only slightly
altered to preserve the speech intelligibility instead of
being erroneously removed as noise.

3 Evaluation and Discussion
Ten speeches from the TIMIT database are tested
here. They are resampled at 8 kHz, quantized at 16
bits, and corrupted by various types of noise from the
NOISEX database. The noises range from 0 dB to 10
dB and include white noise, car noise, fan noise and
f16 aircraft noise.

Two former methods, hybrid Wiener filter (HWF)
based on the 2D Fourier transform in [4] and spec-
tral subtraction with a blade postprocessor (BP) in [2],
are compared with the proposed 2DSF. The Percep-
tual Evaluation of Speech Quality (PESQ) measure,
which aims at objectively predicting the subjective
Mean Opinion Score (MOS) in an ITU-P.800 listening
setup, is used in the experiments. It has been shown
that the PESQ is more reliable and more correlated
with MOS than some traditional measures, such as
SNR and Segmental SNR [8].

The results of the comparison are illustrated in
Fig. 3 to Fig. 6. The 2DSF shows a significant im-
provement compared to the others. This observation
confirms the efficiency and worthiness of the proposed
approach.

Some informal subjective listening tests are also
carried out. The same conclusion that the proposed

method 2DSF outperforms the other two former work
further vindicates the results of objective measure.

4 Conclusion

The problem of 2D spectrogram filtering is discussed
here. The new approach proposed substantially sup-
presses the noise on the spectrogram. Its hybrid
Wiener filter exploits not only the 1D property but also
the 2D correlation to better preserve speech intelligi-
bility while effectively suppressing the noise. More-
over, the speech content is further preserved by the
blade postprocessor which has proven itself to be an
effective post processing tool. The lower complex-
ity of computation, which is largely due to the use of
statistical classification has simplified the implemen-
tation. Objective measure, PESQ, together with in-
formal subjective measure vindicate the superiority of
the 2DSF approach.
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Figure 3: PESQ measure under white noise
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Figure 4: PESQ measure under Car noise
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Figure 5: PESQ measure under Fan noise
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Figure 6: PESQ measure under F16 aircraft noise
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