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Abstract: We introduce a medical control model, in the sense of an optimal control problem, which simulates 
the interaction of immune system with HIV. This model shows the strategy of chemotherapy treatment. In fact, 
the simulated optimal control pair, , represents the virus production and the percentage effect of the 
chemotherapy  on the T cells. We define an objective function characterized based on maximizing T 
cells and minimizing the cost of the chemotherapy treatment. 

),( 21 uu
+4CD

  In this paper, we introduce a new approach to find the optimal pair control for the simulated optimal control on 
treatment of HIV. By using an embedding method, optimal control problem transfers into a modified on the 
measure space, where now the existence of optimal pair is guaranteed by compactness of  the space, and the 
metamorphosed problem in measure space is a kind of an infinite dimensional linear programming problem, 
whose solution can be approximated by that of a finite- dimensional one.   
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1   Introduction 
There are two kinds drugs for treatment of HIV 
infection ([1],[2]), the first kind effects on the virus 
production and reduces the virus production, the 
second kind  effects on the T cells 
production and access T cells production. 

+4CD
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  In this paper, we present a control model which 
consists of two control function for medical control 
of the chemotherapy treatment that uses the above 
two kinds  drugs. The first control, as in [3], 
represents the percentages of effect the 
chemotherapy has on the viral production and the 
next control represents the effect of the second drug 
chemotherapy on T cells access. +4CD
   Pathologists attempt to obtain drugs that have 
capability both effects (reduce virus production and 
access T cells production). However some 
achievements obtained in this case, but still do not 
be yet drugs that have these two effects. 

+4CD

   In this paper our purpose is the representation 
control mode3l that control both cases and 

minimizing the cost of treatment. To avoid harmful 
side effects, as in [1], we impose a condition called 
a limited treatment window, that is the treatment 
starts from time  and lasts to final time t . 0t 1

T +4
∗

 
2  Two- control model  
 There are some simple control models study the 
effects of chemotherapy as an immune system 
infected with HIV, see for example [3,4,5]. We 
basically used the model and notations introduced 
in [1] and extended it as a two-control model. 
 Let  denote the uninfected  CD T cells and 
T  and ∗∗T  denote respectively the latently and 
actively infected  T cells. The free infections 
virus particles are V . We assume that the ordinary 
differential equation model that describes the 
interaction of immune system with HIV virus is as 
follows: 

+4CD
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where the initial values of T  and V  are 
given at t . In this model, the control functions 

for the chemotherapy are  and . These 

are measurable functionals defined on 

∗∗∗ TT

0t
)(1 tu )(2 tu

[ ]0 1I t , t= , 
which are bounded and assume:  

.2,1,1)(0 =≤≤ itui                               (2)                                                                  
 and  in the medical model (1)  Parameters and 
Constants are as follows 
 
 

Tμ = death rate of CD T cell population +4

*Tμ = death rate of latently infected  CD T cell 
population 

+4

**Tμ = death rate of activity infected T cell 
population 

+4CD

Vμ = death rate of free virus 

1k = rate  CD T cell population becomes 
infected by free virus 

+4

2k = rate  ∗T  cells convert to actively infected 

r = rate of growth for the T cell population +4CD
N = number of free virus produced by  ∗∗T  cells 

maxT = maximum  CD T cell population level +4
s = source term for uninfected  T cells  +4CD
 
and  

2max T T
0

max

T 4sT 1 (1 )
2 r r rT

⎡ μ μ
= − + − +

⎤
⎥
⎥⎦

⎢
⎢⎣

. 

Numerical information for parameters is as in [1] 
and can be found in Table 1 of that article. 
 
The objective function that to be maximized is 
defined as  

1

0

t 2 2
1 2 1 1 2 2t

1J(u , u ) T(t) ( u u ) dt
2

⎡ ⎤= − β +β⎢ ⎥⎣ ⎦∫      (3)                     

The desired weight on the benefit and cost are 
shown respectively by the parameters 1β  and 2β , 
where in our case we have chosen 1001 =β  and 

2 100β =  (see [1]). In (3) we are maximizing the 
benefit on T cells count, and minimizing the 
systemic cost based the percentage effects of the 
chemotherapy given. The goal is to characterize the 
optimal pair  and , satisfying *

1u (t) *
2u (t)

1 2 1 2

i

J(u ) J(u ,u ) max J(u ,u ) J(u),
0 u (t) 1, i 1,2.

∗ ∗∗ = = =
≤ ≤ =

    (4)                    

   In this maximization problem, the necessary 
concavity of the objective functional in  

1 2u (u ,u )=  holds. The right hand sides of the 
equations in (1) are bounded, due to a priori bounds 
on the T variables, which imply the needed a priori 
bounds on the state variables. These bounds is 
needed to sure the compactness needed for the 
existence of the optimal control (see [6]). 
  In the next section we change the problem to a 
problem in measure space, where we interface with 
a linear programming problem, and can use all the 
prephonalia of the linear analysis. In fact our 
method based on the following diagram: 
 
 
                              Original model 

 
 

Mathematical model 
  
 

The variational form of the model  
 
 

Change the variational form to an infinite 
dimensional linear problem in measure space by 

Riesz Theorem  
 
 

Modify the problem to a finite dimensional linear 
programming problem by Rosenblum Theorem 

 
 

Using  Rivised Simplexto solve the finite-
dimensional linear programming problem  

 
 
    
    In the following we replace the problem by 
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another one in which the maximum of the objective 
functional (3) is calculated over a set of positive 
Radon measures to be defined as follows. Some 
authors have used this approach in a variety of 
optimal control problems, we mention only [9-11] 
and the pioneering work of Rubio [6] as well. 
Let ,and  

 is the trajectory of the controlled system and  is 
a bounded, closed, pathwise connected set in , 

, where  is a 

bounded, closed subset of . We rewrite 
equations (3)  and (1) as the following reduced 
form:  

I A UΩ = × ×
* **

1 2 3 4x [x (t),x (t),x (t),x (t)] [T(t),T (t),T (t),V(t)] A, t I= = ∈ ∀∈

∀ ∈

A
4\

1 2u(t) [u (t), u (t)] U, t I= ∈ U
2\

1

0

t 2 2
1 2 1 1 1 2 2t

1MinJ(u) J(u ,u ) x (t) ( u u ) dt
2

⎡= = − β +β⎢⎣∫
⎤
⎥⎦

    (5)                               

s.t. 
 ( )x(t) g t,x(t),u(t) , t I ,= D� ∈ ( is interior of )  (6)             ID I          
We call the trajectory- control  
admissible pair, if: 

p [x( ), u( )]= ⋅ ⋅

(i) The trajectory function is absolutely 
continuous, and   

x( )⋅
x(t) A∈

(ii) the pair  satisfies (6) a.e. on . p ID

We denote the set of admissible pairs by . Now, 
we seek to find an optimal trajectory- control pair 

 such that minimizes J(u) 
in (5). In general the minimization of the functional 
(5) over  is not possible. The set  may be 
empty: even if  is not empty, the functional 
measuring the performance of the system may not 
achieve its minimum in this set. It appears that the 
situation may become move promising if the set  
could somehow be made larger. In the following we 
use a transformation to enlarge the set .  Let 

 be an admissible pair and B  an 
open ball containing . We denote by C (

W

*p [x * ( ), u * ( )] W= ⋅ ⋅ ∈

W W
W

W

W
p [x( ), u( )]= ⋅ ⋅

I A× B)′  
the space of real- valued continuously differentiable 
functions on B. Let  and define C (B)′ϕ∈

g (x).gϕ = ∇ϕ                                                  (7)                                                                   

The function   is in the space , the set of 
all continuous functions on the compact set  . For 
each admissible pair, we have (see [9]) 

gϕ C( )Ω
Ω

                        (8) g
I

(t, x,u) , C '(B)ϕ = Δϕ ∀ϕ∈∫
Let  be the space of infinitely differentiable 

real valued functions with compact support in . 

For each   define: 

D(I )D

ID

D(I )ψ∈ D

j
j j(t,x(t),u(t)) x (t) g (t), j 1,2, ,4.ψ = ψ + ψ =� …    (9)                    

so we have (see [9]) 
j

I
(t, x(t), u(t))dt 0.ψ =∫                                   (10)                   

Now, assuming that  is an open ball in R 
containing I, denote the space of all differentiable 
functions on  by , then  

1B

1B 1C '(B )
g (t, x, u) (t), (t, x, u)θ = θ ∈Ω�  

and 
g

1I
(t, x,u)dt , C (B )θθ = α θ∈∫ ' .                     (11)                   

The set of equalities (8) of which we singled out the 
special cases (10) and (11) are properties of 
admissible pairs in the classical formulation of 
optimal control problem in the following section, 
by suitable generalizing them, we shall effect the 
transformation of this into another, nonclassical 
problem which appear to have better properties in 
some respects (see Rubio [6] for details) 
   
3   Optimization in measure space 
For each admissible p , we corresponds the linear 
continuous functional pΛ , as follows: 

p I
: F(.,.,.) C( ) F(t, x(t), u(t))dtΛ ∈ Ω → ∫ .    (12)                   

This well defined mapping is linear, positive, 
continuous and injective (see [10]), Therefore, we 
can identify pairs  with the linear functional p pΛ . 
Using this approach, the above control problem 
with the objective functional (5) can be written as 
follows: 
Minimize p 0(f )Λ                                               (13)                    
Subject  to: 

g '
p ( ) , C (B)Λ ϕ = Δϕ ϕ∈  

j
p ( ) 0, j 1, 2,3, 4; D(I )Λ ψ = = ψ∈ D                   (14)                  

g
p ( ) , C '(B ),θΛ θ = α θ∈ 1                                                

where 2 2
0 1 1 1 2 2

1f x (t) ( u u
2

= − β + β ) .Let  

denote the space of all positive Radon measures on 

)(Ω+M

Ω . By Riesz representation theorem (See Royden 
[7]), there is a one-to-one correspondence between 
functional *

p C ( )Λ ∈ Ω  and a positive Borel 
measure on Ω  such that; 
                                  

p (F) Fd (F), F C( ),
Ω

Λ = μ = μ ∈ Ω∫       
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where  is the dual space on . Using these 
concepts, we change the space of optimization 
problem to the measure space. In other words the 
optimization problem in functional space (13)- (14) 
is equivalent to the following optimization problem 
in measure space: 

*C ( )Ω Ω

Minimize                                                   (15)              0(f )μ                                                 
subject to: 

g '( ) , C (B)μ ϕ = Δϕ ϕ∈  
j( ) 0, j 1, 2,3, 4; D(I )μ ψ = = ψ∈ D                     (16)                             

g
1( ) , C '(B )θμ θ = α θ∈ .

μ

                                               
Define the set of all positive Radon measures 
satisfying (16) as Q , and topologize the space 

 by the weak*- topology. One can prove 
the existence of an optimal measure in the set  
for the functional  under the conditions 
imposed (see Rubio [6]). 

)(Ω+M
Q

0(f )μ→

 
4    Approximation of optimal control by optimal 
measure 
The minimizing problem (15)-(16) is an infinite-
dimensional linear programming problem and we 
are mainly interested in approximating it.  It is 
possible to approximate the solution of the problem 
(15)-(16) by the solution of a finite dimensional 
linear program of sufficiently large dimension. 
Consider the first set of equalities in (16). Let the 
set  

i{ , i 1, 2,...}ϕ =  
be total in C ( ,i.e; be such that the linear 
combinations of the functions  are 
uniformly dense in , we can prove: 

B)′

i C (B)′ϕ ∈
C (B)′

Proposition 1: Consider the linear programming 
consisting of the minimizing functional  

over the set of measures in  satisfying 
0(f )μ → μ

MQ )(Ω+M
g

bb( ) , b 1,2, , Mμ ϕ = Δϕ = … , then if  ∞→M ,  

MM Qinf (f )λ ≡ μ 0  tends to Q 0inf (f )λ ≡ μ . 

Proof: See Appendix of [9]. 
It is possible to characterize a measure in the set 

 at which the linear function  attains in 
minimum, it follows a result of  Rosenbloom [8] 
that: 

MQ 0(f )μ

( )
N

k k
k 1

y∗ ∗ ∗

=

μ ≈ α δ∑ ,                                        (17) 

where , and 

 and  is  an 
approximately dense subset of . In (17) 

k 1 2 ny Y {y , y ,..., y }∗ ∈ = ⊆ Ω

,,,2,1,0 Mkk …=≥∗α Y
Ω δ  is an 

unitary atomic measure that is characterized by: 
.),())(( Ω∈= yyFFyδ  

By (17) and Proposition 1, the infinite- dimensional 
linear programming (15)-(16) can be approximated 
by the following linear programming problem, 
where belongs to an approximately dense subset 
of . 

ky
Y

N

k 0 k
k 1

Minimize f (y )
=

α∑                         (18)                    

Subject to:  
N

g
k k bb

k 1
N

j
k r k

2k 1
N

k s k s
k 1

(y ) , b 1,2, ,M ,

j 1,2,3,4
(y ) 0,

r 1,2, ,M / 4

(y ) a , s 1,2, ,L,

=

=

=

α ϕ = Δϕ =

=
α ψ =

=

α θ = =

∑

∑

∑

…

…

…

1

       (19)                   

.,,2,1,0 Nkk "=≥α  
The set Ω  will be covered with a grid, where the 
grid will be defined by taking all points in Ω  as: 

k k k k k kk 1 2 3 4 1 2y [t,x ,x ,x ,x ,u ,u ]= ,  k 1, 2, , N.= "
The points in the grid will be numbered 
sequentially from 1 to N. We used a home-made 
Revised Simplex to solve the linear programming 
problem (18)-(19). The analysis of constructing 
control and trajectories follows from  Rubio [6]. 
 
5   Numerical Results 
 
Example 1: In medical control problem (1), we 
assume the parameters as: 
 

1k = 52.4 10−×  r =.03 
Tμ =.02 

2k = 33 10−×  N =1200 *Tμ =.02 

m axT =  31.5 10× s = 10 **Tμ =.24 

  
Vμ =2.4 

 
and 
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Intervals Partitions 

TA =[ ] 0 0T ,T 50+

*TA =[0,20] 

**TA =[0,15] 

VA =[0,15] 

1uA =[0,1] 

2uA =[0,1] 

I=[0,500] 

TP =5 

*TP =5 

**TP =5 

VP =5 

1uP =5 

2uP =5 

tP =10 
 
Also let =4, =4, and =10 then by solving 
linear programming (18)-(19) we have  the optimal 
T cell count as T 1 , and  objective function 
value J* as  561,110 . The control functions   
and  are shown in below. In fact they show 
the best policy of drugs treatment .  

1M 2M L

158=
1u (t)

2u (t)

 

 
Also the optimal trajectory function , is shown in 
below. This figure shows that under this kind of 
treatment, uninfected  T cells decrease from 
the beginning up to 300 days, and after that they 
increase hopefully. 

T

+4CD

 
 

 
 
 
 
4   Conclusion  
The method that we developed here for best 
chemotherapy in treatment of HIV is based on 
linear technique. This procedure might become a 
useful technique for the computation of a best 
treatment related to epidemiological disease with 
fully nonlinear model, of course, it in not necessary 
to impose any convexity on objective function. 
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