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Abstract: - In the recent years extensive research efforts have been made to develop alternative refrigeration 

technologies that are environmentally safe. Among of these are thermoacoustic refrigeration and pulse-tube 

technologies. The thermoacoustic refrigerators are devices which use acoustic power to pump heat. However, 

the efficiency of the thermoacoustic refrigerators currently is not competitive the conventional refrigerators. In 

this paper we present an alternative optimization design approach based on the multi-population genetic 

algorithms to maximize the efficiency of the thermoacoustic refrigerators. Since the governing equation of the 

thermoacoustic refrigerators is a system of two-point boundary-value differential equations, we impose a two-

point boundary-value problem solver into the genetic algorithm such that the algorithm can solve the 

governing equation and do optimization at the same time. The results show that the modified genetic algorithm 

is able to obtain the design variables that maximize. 
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1   Introduction 
During the past several decades, environmentally 

safe refrigeration technologies have been interested 

widely in research communities. Among of these are 

thermoacoustic refrigeration and pulse-tube 

technologies [1], [2], [3]. Thermoacoustic 

refrigerators are devices which use acoustic power 

to pump heat. They consist mainly of an acoustic 

resonator filled with a non-hazardous gas. In the 

resonator a stack consisting of a number of parallel 

plates and two heat exchangers are installed.  

Whereas conventional refrigerators have crankshaft-

coupled pistons, the thermoacoustic refrigerators 

only have a loudspeaker for generating a standing 

wave in the resonant tube. The thermal interaction of 

the oscillating gas with the surface of the stack 

generates a heat transfer from one end of the stack to 

the other end. The stack is an important element 

which determines the performance of the 

refrigerator. 

      Although the thermoacoustic refrigeration is 

attractive from an environment perspective, its 

efficiency is still very low compared to the 

conventional refrigeration. Thus, tools for 

optimizing the design variables to improve the 

performance of the thermoacoustic refrigerators 

must be explored. However, because the 

mathematical theory of thermoacoustics is 

complicated, most of optimization attempts rely on a 

more or less intuitive approach. 

      Recently, Wetzel and Herman [4] introduce a 

systematic design and optimization algorithm for the 

design of thermoacoustic refrigerators. They employ 

a simplified linear model of thermoacoustics to 

provide fast engineering estimates for initial design 

calculations. By excluding energy losses in 

resonator, heat exchangers, and loudspeaker, their 

calculations indicate that the thermoacoustic 

refrigeration can achieve the efficiency competitive 

to conventional refrigerators. Miner et al. [5] make 

use of the simplex method to design the 

thermoacoustic refrigerators to maximize the 

efficiency. They show that the improvement in 

efficiency achieved by the optimized design ranged 

between 100% and 200%. 

      In this paper we present an alternative 

optimization design for the thermoacoustic 

refrigerators to improve the cooling performance. 

The optimization is mainly based on the multi-

population genetic algorithm.  However, since the 

governing equation of the refrigerators is a system 

of two-point boundary-value differential equations, 

we impose a soothing method for solving two-point 

boundary-value problems into the genetic algorithm 

in order to numerically solve the governing equation 

and do optimization simultaneously. 
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2   Thermoacoustic Refrigeration 
The thermoacoustic refrigeration system and its 

refrigeration thermodynamic cycle are briefly 

presented in this section. As shown in Fig. 1, the 

main parts of the thermoacoustic refrigerators 

comprise a loudspeaker, a stack, two heat 

exchangers and a resonant tube filled with a non-

hazardous gas. The loudspeaker generates an 

acoustic standing wave in the working gas at the 

fundamental resonance frequency of the resonant 

tube. The length of the resonant tube corresponds to 

haft the wavelength of the standing wave. The heat 

exchangers exchange heat with the surroundings, at 

the cold and hot sides of the stack. The stack, which 

is the heart of the thermoacoustic refrigerator, 

determines the upper limit of the refrigerator’s 

performance. 

 

 
 

Fig. 1 Thermoacoustic refrigeration 

system and its pressure and 

temperature distributions 

 

    Fig. 2 explains the refrigeration thermodynamic 

cycle by considering the oscillation of a single gas 

parcel of the working gas along a stack plate. In the 

first haft cycle (see Fig. 2a), when the pressure of 

the acoustic waves at the stack location is positive, 

the gas parcel is compressed as it slightly moves to 

the left towards the loudspeaker. The compression 

process causes the temperature of the gas parcel to 

rise. In this state the temperature of the gas parcel is 

higher than that of the neighboring stack plate. Heat 

then transfers from the gas parcel to the stack plate. 

During the second half cycle (see Fig. 2b), when the 

pressure of the acoustic wave at the stack location is 

negative, the gas parcel is expanded and moved to 

the right towards its initial position. In this state the 

temperature of the gas parcel is lower than that of 

the neighboring stack plate. Heat is then absorbed 

from the stack plate to the gas parcel. After this state 

the gas parcel has completed one refrigeration 

thermodynamic cycle. It also has arrived back at its 

initial position and temperature. Since there are 

many gas parcels subjected to this cycle and the heat 

that is dropped by one gas parcel is transported 

further by the adjacent parcel, a temperature 

gradient develops along the stack plate as shown in 

Fig. 1. Therefore, a refrigeration system is obtained 

by installing the heat exchangers at the cold and hot 

sides of the stack to exchange heat with the 

surroundings. 

 

 
(a) 

 

 
(b) 

Fig. 2 Illustration of the heat pumping 

cycle in the magnified region of the 

stack: (a) the gas parcel is compressed 

(1 to 2) and heat transfers from the gas 

parcel to the stack plate (2 to 3), (b) the 

gas parcel is expanded (3 to 4) and heat 

transfers from the stack plate to the gas 

parcel (4 to 1). 

 

     The governing equations of the thermoacoustic 

refrigerators are mainly derived from the continuity, 

momentum, and energy equations. At the steady 

state, the pressure )(xp , volume flow rate )(xU , and 

temperature )(xT of the gas can be approximated as 

the sum of some mean value and an oscillating 
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quantity: 
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where ω  is the acoustic angular frequency, mp , mU , 

and mT  are the mean values, tjep ω

1 , tjeU ω

1 , and 

tjeT ω

1  are the oscillating quantities, and 1p , 1U , and 

1T  are complex. To solve the governing equations, 

we need to solve a complex boundary-value 

problem. Readers are referred to [1] and [2] for 

details and discussions of the governing equations. 

      To solve the boundary-value problem, we utilize 

a shooting method [10]. The shooting method starts 

with guessing the unknown system’s parameters 

such as acoustic frequency and volume flow rate. 

Then, we numerically integrate the equations from 

the loudspeaker end to the closed end of the 

resonator. After that the boundary conditions at the 

end of the resonator, which are zero acoustic power 

and zero energy conditions, are verified. If not, the 

value of the guessed parameters will be adjusted, 

and we can iteratively try again and again, until the 

boundary conditions are satisfied. Newton’s method, 

for example, can be used to adjust the parameters. 

However, because of the complexity of the 

governing equations the convergence of this 

iterative process can not be guaranteed. 

     The coefficient of performance, COP, of the 

refrigerators is defined as 

ac

c

W

Q
COP =  

where cQ  is the cooling load (the rate of the heat 

transfer at the cold heat exchanger) and acW  is the 

input acoustic power provided by the loudspeaker. 

The second law of thermodynamics limits the value 

of COP as COP ≤ COPC , where COPC is the 

Carnot’s coefficient of performance defined as 

ch

c
C

TT

T
COP

−
=  

where Th and Tc are the temperatures of the hot and 

cold heat exchangers, respectively. 

 

3   Multi-Population GAs 
Genetic algorithms (GAs) are powerful search 

techniques inspired by Darwin’s theory of “survival 

of the fittest.”  Nowadays, GAs have been applied 

successfully to solve optimization problems in many 

different disciplines [6],[7]. One of the most 

promising solutions to make GAs faster is to use 

parallel implementations. Multi-population GAs are 

the most parallel method among the parallel GAs 

with numerous publications.  The multi-population 

GA splits the population into a finite number of 

subpopulations. Every subpopulation evolves over a 

number of generations isolated before some sort of 

communication between the subpopulations occurs. 

The most chosen communication operator is 

migration whereas the most universal commu-

nication topology is unrestricted migration topology. 

A detailed discussion of parallel GAs, including the 

multi-population GAs, can be found in [9]. 

 

4   Optimization Design Problems 
In this paper we choose to design a thermoacoustic 

refrigerator for a temperature Th of 300.7 K (27 °C) 

and a cooling load cQ of 3 Watts. The refrigerator 

has the configuration of Hofler’s prototype [1], [2], 

[5]. The geometry of the refrigerator is set 

corresponding to the desired cooling load of 3 Watts 

and the acoustic frequency around 500 Hz. The 

working gas is helium. The optimization problem is 

formulated to maximize the cost function 

)(dCOPRJ =                           (4) 

where CCOPCOPCOPR /=  is the relative 

coefficient of performance defined as the ratio of the 

coefficient of performance to the Carnot’s 

coefficient of performance and d is a vector of 

decision variables 

     The decision variables, d, comprise the half-plate 

spacing of the stack (h) and the stack length ( x∆ ). 

The maximization is subject to three sets of the 

constraints. First, it require the refrigerator to 

provide the specified cooling load and temperature 

Th. Second, the design parameters have to fall within 

specified bounds. Third, the system’s parameters 

must satisfy the thermoacoustic nature (e.g., the 

system operates at the acoustic resonance, the zero 

acoustic power loss and zero energy boundary 

conditions at the end of the resonator, and Tc < Th).  

The first constraint can be easily achieved by setting 

the cooling load and temperature Th to be constant 

parameters of the system. The second constraint is 

also obvious for the GAs. The most difficult 

constraint to deal with is the third one. We need to 

solve a boundary-value problem using the shooting 

method to determine the system’s unknown 

parameters. The parameters comprise the acoustic 

angular frequency (ω ) and the volume flow rate 

( 1U ). In theory the optimization process can easily 

follow the flow chat in Fig. 3.   
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Fig. 3 Flow chart of an optimization process 

 

     However, for traditional optimization techniques 

such as the steepest descent technique, the derivative 

of the cost function must be available or can be 

estimated. This is not easy to do in our problem 

because of the complicatedness of the mathematic 

model of the system.  The techniques that do not 

require the derivative information such as the 

simplex method and the GA-based approach are our 

candidates. 

     In this paper we are interested in the GA-based 

optimizer.  By considering the flow chat in Fig. 3 

carefully, we found that it is not suited for GA-based 

approach because it requires  the  iterative  procedure 

to  solve  the  governing  equations  for  every 

chromosomes and generations. This consumes a lot 

of the computational time. Therefore, we proposes a 

modified GA that combines the soothing method into 

the genetic algorithm in order to numerically solve 

the governing equations and do optimization at the 

same time. 
 

5   Modified Genetic Algorithm 
The flow chat of the proposed genetic algorithm is 

shown in Fig. 4. The chromosomes do not contain 

only the decision variables, but also the system’s 

unknown parameters: 

 chromosome = [ 1,,, Uxh ω∆ ]. 

     This implies that the GA will solve the boundary-

value problem and do the optimization at the same 

time. In each generation the chromosomes must be 

evaluated and fixed prior the normal GA steps. The 

flow chat of the chromosome fixing is shown in Fig. 

5.  As shown in the figure, the number of iteration in 

the shooting loop is now limited to some small 

start

Initialize the decision variables

(                )
00

xandh ∆

Guess the values of the system’s parameters

(             )00 , Uω

Integrate the governing equations

(  e.g, Eq. 1-3 )

B.C. satisfy?

Obtain the feasible values of

the system’s parameters

(               )

COPR evaluation

Yes

Terminate ?

Optimizer

End
Yes

No

Shooting for the new values of

the system’s parameters

(            )ii U,ω

Update the decision variables

(              )
ii

xandh ∆

ff U,ω

No
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number and the satisfaction level of the boundary 

condition is relaxed to “roughly satisfy”. When the 

shooting loop converges to the pre-specified region 

(in the neighborhood of boundary conditions) within 

the given maximum iteration, the corresponding 

chromosomes are called feasible chromosomes (B.C 

flag = 1) and their fitness is given as 

     fitness = COPR – magnitude of acoustic power  

                                  loss and energy  at the end of  

                                  the resonator, 

otherwise (B.C. flag = 0)   

     fitness = 0. 

 

Note that only genes ω  and 1U  are altered while in 

the shooting loop. Moreover, since we use the real 

chromosomes in this paper, this makes the fusion of 

the GA and the shooting method even more natural. 

There is no need of a binary-real conversion step. 

 

Start

Initialize population

Fitness evaluation

Max generation ?
Output decision

values

Selection

Crossover

Mutation

Ranking

Migrate
Yes

No

Yes

No

End

Chromosome fixing

(Fig. 6)

Migrate generation?

 
Fig. 4 Modified multi-population GAs 

 

Note that only genes ω and U
1 

are altered while in 

the shooting loop. Moreover, since we use the real 

chromosomes in this paper, this makes the fusion of 

the GA and the shooting method even more natural. 

There is no need of a binary-real conversion step.  

 

6   Development of the modified GA  
6.1 Decision Variables and Cost Function  
Referring to section 4, the decision variables consist 

of the half-plate spacing of the stack (h) and the stack 

length ( x∆ ). The search range for h is limited to 0.01 

≤ h ≤ 10 mm, search range for x∆ is limited to 0 ≤ 

x∆  ≤ 90 mm. The cost function for maximizing 

is  

CCOP

COP
COPRJ ==  

6.2 Chromosome  
We use real chromosome in this paper. 

Referring to section 5, the chromosome of each 

individual contains both the decision variables 

and the system’s unknown parameters (i.e. 

chromosome = [ 1,,, Uxh ω∆ ] ). The search range 

for ω is limited to 200π ≤ ω ≤ 1400π Hz, and the 

search range for U1 is limited to  0 ≤ U1 ≤ 0.01  

m3/sec. 

6.3 Fitness Assignment  
As mention earlier, the design objective is to 

maximize the relative coefficient of performance 

(COPR). Since we are dealing with a boundary-value 

problem, the fitness is set such that the violation of 

the boundary conditions will penalty the fitness. In 

addition, if the violation is too high (i.e., the shooting 

does not converge to the pre-specified neighborhood 

of the boundary conditions), the fitness will set to 

zero. The detail is described in section 5.  

6.4 Recombination (Crossover) and 

Mutation Methods  
A discrete recombination is used. The recombination 

performs an exchange of genes between the 

individuals. In addition, the mutation is done by 

randomly created value to add to the genes with a 

low probability.  

6.5 Communication Method  
The communication between subpopulations is 

based on unrestricted migration topology. 

     The parameters setting for the modified GA is 

summarized in Table 1. 

(Fig. 5) 
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Fig. 5 The proposed chromosome fixing 

 
Table 1. Parameter setting 

Parameter Value 

Population size 200 

Subpopulation size 40 

Real chromosome length 3 

Crossover probability 1 

Mutation probability 0.14 

Migration probability 0.2 

Number of generations  

between migration 

20 

Number of generations 40 

7.   Results  
The maximum COPR that is the result of the 

modified GA search is 0.17530224, which agrees 

with the results of Hofler. The history of COPR in 

each generation is shown in Fig. 6. Note that the 

convergence occurs after the 27
th
 generation. 

 

 

 

 

 

 

 

Fig. 6 Convergence rate 

 
Fig. 7 Final distribution of COPR  

 

    Fig. 7 shows the distribution of COPR of the final 

generation. It shows that there are many 

chromosomes yielded the maximum COPR.  This 

implies that we can reduce the computational time 

by reduce the number of population. 

 

7  Conclusion and Future Work 
A modified genetic algorithm (GA) that allows us to 

solve a boundary-value problem and do the 

optimization at the same time was presented in this 

paper. The algorithm reduces the computational time 

by relaxing the convergence of the shooting method. 

The good result was obtained. 

     Future work will attempt to apply this 

algorithm to more complicated problems and 

investigate faster and better algorithms. 
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