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Abstract: - A new algorithm is presented for distance protection based on the weighted recursive least-square 
method. This approach operates directly on voltage and current samples, without employing, as it usually 
happens, the phasor approach applied in the complex space. In comparison with other solutions, the algorithm 
is very robust and allows high speed in the fault localization on both HV and MV systems. Capabilities and 
performances of the algorithm are properly analysed and discussed in the paper.  
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1  Introduction 
A distance protection is based on the estimate of 
the line direct impedance ( dZ ) between the relay 
and fault [1], [2], [3], [4], [5]. Since symmetrical 
electrical power lines exhibit constant kilometric 
impedance, the fault distance can be promptly 
evaluated once Rd and Ld line fault parameters are 
known.  
The most frequently adopted protection procedure 
is usually derived from the symmetrical component 
theory [1], [3], [5], which allows processing 
voltage and current signals in order to determine 
the fault distance. These procedures, for instance 
that based on the Phase-Modified Fourier 
Transform (PMFT), [4], employ the simplified line 
equivalent circuit of Fig. 1. 
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Fig. 1.  Simplified faulted-line equivalent circuit. 
 
 

In this case, the following differential equation can 
be written:  

( )( ) ( )d d
di tR i t L v t
dt

⋅ + ⋅ =  (1) 

 
where  the unknowns can be expressed as 

[   ]d dR Lϑ = .  
 
With reference to the PMFT, the problem is solved 
by using a variable observation window ( WT ) 
which moves during the sampled signal 
processing. Once the voltage and current signals 
are acquired, the PFMT can be applied as follows 
[4]:    
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By separating the real and imaginary parts, the 
following two integral equations with the two 

[   ]d dR Lϑ =  unknowns can be written: 
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This system can be expressed also in a matrix form 
as follows:  
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The corresponding system determinant is: 
  

),(),(),(),(),( eqefeqefe tItItItIt ωωωωω ⋅′−′⋅=Δ
 

When this determinant is different from zero, the 
system gives the following solution: 
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Since the kilometric resistance and inductance of 
the line are known, the fault distance can be 
quickly estimated.  
The symmetrical component approach operates by 
extracting medium physical effects through signal 
filtering; in this case the use of a simple d dR L  
circuit and an analysis in the complex space allow 
to achieve the fault parameter estimation.  
The most recent digital procedures have greatly 
improved this approach allowing better precision 
and reliability in the estimated results [4], [6], but 
the need for a phasor representation has always 
prevented some of the capabilities offered by 
digital technology, for instance the possibility to 
operate directly on the samples of the acquired 
quantities instead of on medium-filtered, pre-
processed signals. In order to exploit the latter 
possibility, in the following the use of a Weighted 
Recursive Least-Square (WRLS) approach is 
proposed to estimate fault line parameters. 
 
 

2 The WRLS approach for line 
parameter estimation  

Once the type of a short circuit is identified, each 
relay must estimate the distance between its own 
position and the fault in order to achieve the 
required selectivity for a correct line trip either in 
the instantaneous operation or in reserve (second 
or third step).  

The problem is introduced by assuming the 
validity of the (1) differential equation and the 
availability from A/D conversion devices of 
sampled and digitalized signals.   
In addition, the following assumptions are 
established:  

• 
s

s f
T 1

=   : sampling step  ( sf : sampling 

frequency). 
• sTkt ⋅=   :  the discretized real time, 

where  +∈ Nk . For simplicity reasons in 
the following this time will be indicated 
as: kt = . 

• The derivative operation is approximated 
using the centered Euler method.  

 
According to the above assumption, the following 
relation can be written: 
 

( ) ( 1) ( 1) ( )
2 S

di t i k i k D i k
dt T

+ − −
≈ = . 

 
As a consequence, the (1) differential equation can 
be rewritten as:  
 

( 1) ( 1)( ) ( )
2d d

s

i k i kR i k L v k
T

+ − −
⋅ + ⋅ = . 

 
Finally, by adopting the matrix notation, the same 
relation takes the following form: 

 

[ ] [ ]( )
( ) ( ) ( )

( )
d

d

R k
i k D i k v k

L k
⎡ ⎤

=⎢ ⎥
⎣ ⎦

    (2). 

 
A heuristic solution can be obtained by writing the 
(2) relation for two subsequent instants and solving 
a system with two equations and two unknowns 

[   ]d dR Lϑ = . Unfortunately, this method supplies 
solutions oscillating around the right value. For 
this reason, by assuming that the samples of 
voltages and current must always satisfy the 
discrete (2) relation, the same equation can be 
written m times so as to obtain the following 
equation system:  
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 (3) 

 
In a compact form, the same system can be written 
as:  
 

( ) ( ) ( )A k k Y kϑ⋅ = , where ( 2)( ) mA k R ×∈ , 
2( )k Rϑ ∈  and  ( ) mY k R∈ . 

 
The problem is here to solve the (3) 
overdimensioned system defined inside the k time 
interval. In order to obtain an optimal solution, 
objective criteria must be established for 
evaluating the reliability of the estimate. As a 
matter of fact, this means to establish an objective, 
either cost, weight or merit function. It is evident 
that for each objective criterion established, a 
different optimal solution will be obtained. Since a 
continuous evaluation of the goodness of the 
estimate can be obtained from the computation 
error, assuming the error as  ϑε ~AY −= , the 
most frequently adopted criterion refers to the 
norm of the ε  error. In this case, the objective 
function refers to the minimum value of the norm 
of ε , which is defined as: 

( ) ( ) ( ) ( )Tk k W k kε ε ε
Δ

=  
 
where ( )W k  is named the weight matrix, that is 
defined as symmetrical and positive. The 
associated optimal ˆ( )kϑ estimate is obtained by 
solving the following optimization problem:  
 

2
m̂in[( ( ) ( ) ( )) ( )( ( ) ( ) ( ))]T

R
Y k A k k W k Y k A k k

ϑ
ϑ ϑ

∈
− −  

 
The procedure exhibits a single solution only when 
the rank of the ( )A k  matrix has the same 
dimension as the unknown vector. This solution is 
obtained by setting the gradient of the previous 
relation as equal to zero: 
 

ˆ2 ( ) ( )( ( ) ( ) ( )) 0TA k W k Y k A k k
ϑ

ϑ− − =  

 
The Weighted Least-Square estimate can be 
written as:  

†ˆ( ) ( ) ( )Wk A k Y kϑ = ⋅        (4) 
 

where 
† 1( ) ( ( ) ( ) ( )) ( ) ( ))T T
WA k A k W k A k A k W k−= ; 
† ( )WA k  is a pseudo-matrix. 

 
This formulation involves a static problem since 
the ( )A k matrix is built until the m dimension is 
reached; once the estimate is computed, if a new 
estimate is required  further samples must be 
acquired and more equations must be added to the 

( )A k matrix. 
The dynamic or recursive formulation is a 
technique that uses a reduced numerical 
complexity and minor data storage capabilities, 
allowing to calculate an optimal estimate from the 
knowledge of only both the estimate computed in 
the previous instant and the equation in the current 
time instant. To this purpose, it is useful to define 
the following matrix:  
  

1))()()(()( −
Δ

= kAkWkAkS T        (5) 
 
In this case, taking into account  the (4) equation, 
the optimal estimate in the instant k is: 
 

)()()()()(ˆ kYkWkAkSk T=ϑ . 
 
The problem can be solved by establishing the 
following positions:  
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+
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kY
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At this point, specific relations must be searched 
for the computation of the following two 
quantities: 
 

• 1))1()1()1(()1( −+⋅+⋅+=+ kAkWkAkS T  
       (when )(kS  is known). 
 
• )1()1()1()1()1(ˆ +⋅+⋅+⋅+=+ kYkWkAkSk Tϑ

(when )(ˆ kϑ is known). 
 
The recursive relation between )1( +kS  and 

)(kS  can be found by developing the following 
linked block matrices:  
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The computation of the second quantity requires a 
derivative operation of the recursive relation 
between )1(ˆ +kx  and )(ˆ kx :  

 

 
Finally, the fault distance can be accurately 
estimated by means of relations (3), (4), (6), (7) 
and (8). 
 
 
3  The proposed estimate algorithm  
Based on the above demonstrations, the following 
computation algorithm can be implemented:  
 
0.   Initial conditions:  

► Sampling time of the signals observed by 
relay: Ts= 0.4 ms. 

►  Dimension of the initial observation matrix: 
m= 10.  

► Dimension of the post-fault observation 
matrix: mG= 2. 

1. Initialization process (first estimate by means of 
the Minimum Square method): 
1.1   Identification of the matrices:  

( 2)( ) mA k R ×∈ , ( ) mY k R∈  and 
( )( ) ( ) m mI k W k R ×= ∈  with the first m 

samples (before the fault occurrence). 
1.2  Computation of the matrix: ( )S k = (5). 
1.3  First estimate computation of the 

unknown parameters: )0(ϑ̂ = (8).  
2. Pre-fault (Recursive-Least-Square method): 

2.1  Identification of the new equations: 
)1( +ka ,  ( 1) 1w k + = , )1( +ky . 

2.2  Computation of the unknown parameter 
estimates: =+ )1(ˆ kϑ  (8).  

2.3  Computation of the matrix: )1( +kS = 
(7). 

2.4  GOTO 2.1  in case there is no fault, 
otherwise continue. 

3. Post-fault (Least-Square method): 
3.1 Identification of the matrices )21( xA , 

)11( xY , )11()11( xx WI =  at the sampling time 
immediately after the fault detection. 

3.2  FOR j = 2 :  mG. 
  ► )2( jxA , )1( jxY , )()( jxjjxj WI =  

  ► Computation of the matrix: )2( xjS = 
(5). 
  ► Computation of unknown parameter 
estimates: 
ˆ ( ) (4) ( ) ( ) ( ) ( )T

g k S k A k W k Y kϑ = =    
4. Post-fault (Weighted Recursive Least-Square 

method): 
4.1  )1( +ka ,  ( 1) 1000w k + = , )1( +ky  

4.2 =+ )1(ˆ kgϑ  (8)  
4.3 )1( +kS = (7) 
4.4   GOTO 4.1 until the simulation is over. 

 
 
4  Conclusions 
The above described Weighted Recursive Least-
Square method has proved a valid alternative to 
other techniques currently adopted in the parameter 
estimation for distance protection. The method 
operates directly on voltage and current samples 
acquired by relays, allowing a fast, precise 
estimate of fault distances. The proposed algorithm 
can be directly implemented in the presently used 
apparatuses for distance protection, since no 
changes are required in the hardware of the 
adopted relays.  
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