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Abstract: - The knowledge of dynamic states of electrical machine, especially the relative rotor position and 
velocity, are very important for us to understand the machine performance and to possibly design advanced 
control systems. This paper addresses the state estimation problem of synchronous machines in power systems, 
both in deterministic and stochastic cases during small transients. The paper examines Extended Kalman Filters 
(EKF) and Particle Filter (PF) approaches.  With real-time data collected by phasor measurement unit (PMU) 
and sufficiently known machine model, the simulation results show that the states dynamics can be successfully 
and accurately estimated. The method proposed in this paper can be easily applied to other type machines or 
extended to include parameter estimation. 
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1 Introduction 
Electrical machines are one of the most important 
components in power systems, and their control is 
one of the greatest challenges in maintaining stable 
operation.  The use of machine dynamic states in 
advanced controls requires either direct measurement 
or model-based estimation.  With the emerging use of 
Phasor Measurement Units (PMUs), there is an 
opportunity to combine these two methods for full 
dynamic state computation using both direct data 
application and model prediction.  The Extended 
Kalman Filter (EKF) has been examined for use with 
the advanced control of smaller electric machines  
[1]-[2]. However, the EKF uses local linearization of 
the nonlinear functions and assumes a Gaussian 
distribution for the model and measurement errors. It 
is not a sufficient description of the nonlinear and 
non-Gaussian system.  In this paper, a novel method 
for state estimation of electric machines is proposed. 
It utilizes the theory of nonlinear filtering, uses the 
Sequential Importance Sampling (SIS) algorithm, 
also known as the Particle Filter (PF) method to 
handle highly nonlinear dynamics in power systems 
[3].  The PF method is applied to a large  synchronous 
machine model with voltage and speed controls.  
Simulation results show that the states can be 
successfully and accurately estimated, even in 
transients.  Comparisons are made between the EKF 
and PF methods.  Future applications will also 

examine the potential for estimating model 
parameters using real-time PMU measurements.    
The remainder of this paper provides the system 
model in section 2, followed by a description of the 
nonlinear filtering algorithm in section 3 and the 
results in section 4. Conclusion and other 
considerations are given in section 5. 
 
 
2 System Model 
 
The system considered is a synchronous machine in 
power system. This paper uses the conventions and 
notations of [4], which are consistent with standard 
industry modeling and simulation software.  The 
nonlinear model is a two-axis machine model with 
IEEE-Type I exciter/AVR and turbine/governor.  The 
differential-algebraic equations are summarized as: 
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where x  is the system state,  is the output, and u  
is the control vector. 
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The detailed n -bus- -machine system model is in 
the following general form: 
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Differential Equations  (2) 
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Stator Algebraic Equations  (3) 
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etwork Algebraic Equations  (4) 
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With reference to (1), this model has: 
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Now, considering the system and measurement 
noises, and modeling uncertainties of the system, the 
dynamic model is rewritten as: 
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where  and v λ  are noise or model uncertainties. 
 
Equation (6) is a realistic description of the real 
system, because of the included noise and 
uncertainties. 
 
 
3 Nonlinear Filtering 
The model of a synchronous machine has numerous 
nonlinearities. The nonlinear filtering is based on the 
following factors: 
 

 A knowledge of the system model 
 The statistical characteristic of the system and 

measurement noise and uncertainties. 
 The initial probability distribution function (pdf) 

( ) ( )0 0 0|p x y p x≡ , also known as apriori. 
 
From the information, the posterior pdf ( )1:|k kp x y  
may be obtained recursively in two stages: prediction 
and updates. 
 
 
3.1 Extended Kalman Filter (EKF) 
The EKF is a sub-optimal algorithm for nonlinear filtering. 
It assumes that v  and λ  are drawn from Gaussian 
distributions of known parameters. The EKF utilizes the 
first term in a Taylor expansion of the nonlinear function 
described in equation (1), assuming the local linearization 
of the equations maybe a sufficient description of the 
nonlinearity. 
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where k̂F and  are the local linearizations of the 
nonlinear functions 

ˆ
kH

f  and .  and h 1kv − kλ  have zero 
mean and covariances  and 1kQ − kR  respectively. A 
higher order EKF that retains further terms in the 
Taylor expansion exists, but the additional 
complexity has prohibited its use in this problem. 
Based on this approximation, the posterior pdf 
( 1:|k k )p x y  is approximated by a Gaussian 

distribution. 
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The linearization approximation of EKF will lose 
some information. Moreover, it always approximates 
( 1:|k kp x y  to be Gaussian. If the true density is 

non-Gaussian, then a Gaussian assumption will 
contain additional error.  The particle filtering 
methods introduced in the next section will not 
require this Gaussian assumption. 
 
 
3.2 Particle Filter (PF) 
Compared with EKF, the assumption of the Gaussian 
distribution has been removed, and there is no 
information lost due to the linearization of the 
nonlinear system. Hence, PF is more suitable for 
systems with nonlinearities and non-Gaussian noise 
and uncertainties.  PF can process all measurements 
regardless of their precision, to provide a quick and 
accurate estimate of the variables of interests. 
 
The basic idea of PF methods is to represent the 
required posterior pdf by a set of random samples 
with associated weights; and compute estimates 
based on the samples & weights. 
 

The basic algorithm of the PF method is: 
Step 0: Sample the system { }0 0 1
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i
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Step 1: Predict the system evolution using  
( )1, , ,i i
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Step 2: Update the associated weights based on 

observation ,ky
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Step 3: Resample if necessary.  
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 Step 4 (if necessary):  Go back to step 1. 
 
This algorithm is explained through Figure 1. as 
follows: 
We sample from the distribution at time 1, with only 
5 samples shown here as dots. The size of each dot 
represents its weight. When moving to time 2, the 
position of each dot is changing according to the 
formula in Step 1, the size of each dot, which means 
the associate weight, is changing according to the 
formula in Step 2. Same happens as moving to time 3. 
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Fig.1 The illustration of Particle Filter Algorithm 

 
The quasi-code of PF adopted from [3]:  
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 Initialize the CDF:  1 0c =
 FOR 2 : si N=  

- Construct CDF: 1
i
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 END FOR 
 Start at the bottom of the CDF:  1i =
 Draw starting point:  1
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 FOR 1: sj N=  
- Move along the CDF: ( )1
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- WHILE j iu c> ;  1i i= +

- END WHILE 
- Assign sample: *j i

k kx x=  
- Assign weight:  1j

k sNω −=

- Assign parent:  ji i=
 END FOR 

 
The algorithm presented above forms the basis for 
most particle filters that have been developed so far. 
The various versions of PF proposed in the literature 
can be regarded as special cases of the general PF.  
This general PF algorithm was applied to the state 
estimation problem of the synchronous machine. 
 
 
4   Simulation Results 

 
Fig. 2 WSCC 3-machine, 9-bus system 

The popular Western System Coordinating Council 
(WSCC) 3-machine, 9-bus system is used in the case 
study [4]. 
The Power System Toolbox (PST 2.0 – [5]) was used 
to generate the system dynamics and collect the data 
as a realistic simulation.  The output of this 
simulation was then used as the measurements for the 
nonlinear filtering algorithm, to obtain the estimates 
of the system states1. 
 
 
4.1 WSCC Case 1: Deterministic 
In this case, there are no system uncertainties or 
measurement noises. The whole system is fully 
deterministic. The changes of real power load on bus 
5 cause the system transients. 
With no knowledge of the initial value, we applied 
both EKF and PF on state estimation of the 
synchronous machine as bus 1. 
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1 The dynamic machine model used in PST is slightly 
different from the one described in equation 2. The 
difference will be taken care of as the unknown system 
uncertainties is the algorithm. 
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Fig. 3 The PST simulation data and estimation results 
from EKF and PF on WSCC system. The assumed 
noise variance is small in EKF/PF. Machine angle, 
velocity and '

dE  are shown in figure (a)-(c) 
respectively. Other states are not shown here. 
 
Table 1: RMSE of EKF and PF methods 
RMSE δ  ω  '

qE  '
dE  fdE  fR  RV  

EKF 0.22 0.24 0.11 0.082 0.030 0.036 0.026 
PF 0.11 0.22 0.20 0.082 0.033 0.037 0.027 
 
From figure 3 and table 1, we can see that: 
(1) The estimation from both EKF and PF can 

converge to the true value. 
(2) For the states that both PF and EKF converge, PF 

also converges to the true value faster than EKF. 
(3) Take a further look at the results, PF shows that 

the posterior is not necessarily a Gaussian 
distribution, as in figure 4, which also gives us a 
more accurate description of the system. 
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Fig. 4 the posterior of  machine speed from PF 

 
It should be mentioned that, if the guessed initial 
value of system states are way off the true value, the 
estimation might not converge, for both EKF and PF. 
Also, such results are based on the knowledge of 
system stochastic characters. If such information is 
not available wrongly assumed, PF estimation might 

not have good performance, as shown in figure 5. 
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Fig. 5 The PST simulation data and estimation results 
from EKF and PF on WSCC system. The assumed 
noise variance is large in EKF/PF. 
 
 
4.2 WSCC Case2: Dynamic with noises 
In this case, the changes of real power load on bus 5 
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are exactly the same as the changes of the case in 
section 4.1. But there are measurement noise, which 
is Gaussian distribution , and the system 
noise, which is Uniform distributed, . 
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Fig. 6 The PST simulation data and estimation results 
from EKF and PF on WSCC system with noises. 
Machine angle, velocity and '

dE  are shown in figure 
(a)-(c) respectively. 

The simulation results in this case show that PF 
method can follow the simulation result fairly well, 
while EKF method fails to do so. It is not saying that 
EKF doesn’t work for all such cases, but generally PF 
works better in cases when there are noises or 
uncertainties involved. 
 
 
5
 
   Conclusion 

In this paper, the particle filter algorithm has been 
introduced to estimate the system states of 
synchronous machine in power systems. Compared 
with conventional sensorless estimation methods, PF 
does not have any limitation, and can get all system 
states as needed. PF lifts the assumption of Gaussian 
distribution from the EKF method. And PF is easier 
to implement since there is no local linearization. The 
simulation results meet the expectation, and PF also 
has better convergence than EKF. With few 
modifications, PF can be applied to parameter 
estimation and extended to other types of machines. 
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