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Abstract: Although support has been used as a fundamental measure to determine the statistical importance of 

an itemset, it can’t express other richer information such as quantity sold, unit profit, or other numerical 

attributes. To overcome the shortcoming, utility is used to measure the semantic importance and several 

algorithms for utility mining have been proposed. However, existing algorithms for utility mining adopt an 

Apriori-like candidate set generation-and-test approach，，，，and are inadequate on databases with long patterns. To 

solve the problem, this paper proposes a hybrid model and a novel algorithm, i.e., inter-transaction, to discover 

high utility itemsets from two directions: existing algorithms such as UMining [1] seeks short high utility 

itemsets from bottom, while inter-transaction seeks long high utility itemsets from top. To avoid the costly 

process of extending short itemsets step by step, inter-transaction find long itemsets directly by intersecting 

relevant transactions. Experiments on synthetic data show that the new algorithm achieves high performance, 

especially in high dimension data set.  

 

Key-Words: utility; long high utility itemset; intersection transaction; partition; hybrid model 

 

1 Introduction 

Traditional association rule mining (ARM) aims to 

find all itemsets that have support above a user 

defined threshold. It treat all the items equally by 

assuming that the utility of each item is always 1 

(item is present) or 0 (item is absent). Under this 

kind of model, a wholesale of an itemset is treated in 

the same way as a small sale: corresponding support 

is added by one. Obviously, it’s unrealistic and will 

lead to some useful pattern missed. For example, in a 

transaction database, there are 1000 sale records of 

milk which occupy 10% of the total transaction 

number, contributing 1% of the total profit. On the 

other hand, there are 600 sale records of birthday 

cake that occupy 6% of the total number, 

contributing 5% of the total profit. If the support 

threshold is 8%, according to traditional mining 

algorithm for finding frequent itemsets, milk will be 

reported as a frequent item and birthday cake will be 

ignored. But in fact, the market professional must be 

more interesting to birthday cake because it 

contributes a larger portion to total profit than milk. 

The example shows that support is not sufficient to 

reflect user’s interestingness. 

According to Expectancy Theory [2], we have 

the well-known equation “motivation=probability * 

utility”, which says motivation is determined by the 

utility of making a decision and the probability of 

success. In many fields such as retailing, web log 

technique, users are not only interested in the 

frequency of occurrence of an itemset (support), but 

also their utility. So a decision-oriented ARM 

algorithm should output both the support and the 

utility of all interesting patterns. For this reason, 

utility based ARM has been proposed to discover all 

itemsets in a database with utility values higher than 

a user specified threshold. 

 Table 1 is an example of a simplified 

transaction database where the total utility value is 

162. The number in each transaction in table 1 is the 

sales profit of each item. if s(X) and u(X) represent 

the support and utility of itemset X respectively, then 

u(A,B)=43, s(A,B)=5, u(A,B,C)=54, s(A,B,C)=3, 

u(A,B,C,D)= 45, s(A,B,C,D)=2, u(A,B,C,D,E)=57, 

s(A,B,C,D,E)=2. 

 
 A B C D E 

T1 0 0 5 0 1 

T2 2 3 0 0 0 

T3 3 5 15 7 4 

T4 0 0 4 7 2 

T5 4 5 8 0 0 

T6 9 4 0 0 2 

T7 6 0 8 3 6 

T8 0 0 0 6 3 

T9 3 0 0 9 5 

T10 3 5 6 1 8 

 
Table1. A transaction database 

 

If support threshold is 0.3 and utility threshold is 

50, {A,B} is a frequent but not a high utility itemset, 

{A,B,C} is both a frequent and high utility itemset, 

{A,B,C,D} is neither a frequent nor high utility 

itemset and {A,B,C,D,E} is a high utility but 

non-frequent itemset. 

From above example, we can draw a conclusion: 

downward closure property, which states if an 
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itemset is frequent by support, then all its nonempty 

subsets must also be frequent by support, doesn’t 

apply to utility mining. Relevant studies have shown 

that utility constraint is neither anti-monotone nor 

monotone nor succinct nor convertible [3] [4]. 

Because of this property, most algorithms for 

frequent pattern mining can’t be used to find high 

utility itemsets. 

Furthermore, all existing algorithms for utility 

mining are Apriori-like algorithms. They employ a 

bottom-up, breadth-first search, iteratively generate 

candidate (k+1)-itemsets from k-itemsets and are 

inadequate on datasets with long patterns. To the best 

of our knowledge, there is no efficient algorithm for 

mining long high utility itemsets by far. To solve the 

problem, we propose a hybrid top-down/bottom-up 

search model and a partitioning-based algorithm, i.e. 

inter-transaction. Under the hybrid model, existing 

algorithm such as two-phase searches the short high 

utility itemsets in a bottom-up manner, while 

inter-transaction searches long high utility itemsets in 

a top-down manner, they complement each other. 

Inter-transaction is based on the fact that long 

transactions usually have few common items, which 

means the intersection of multiple long transactions 

is usually very short. Since existing algorithms are 

efficient for short itemsets, we emphasize on 

introducing the inter-transaction. 

The remainder of the paper is organized as 

follows: section 2 overviews related work, section 3 

formally defines relevant terms and notations; 

section 4 introduces the new algorithm. In section 5, 

experimental results are presented and in section 6, 

we summarize our work. 

 

 

2 related work 
Lots of researches have been conducted to improve 

the usefulness of traditional ARM, but most of them 

are utility-related, not utility-based. Value added 

association rules [5] [6] extends traditional 

association rules by taking into consideration 

semantics of data. The difference between [5] and [6] 

is that price and quantity of supermarket sales are 

considered in the former, while the later try to attach 

a value to every item in the database and use the 

added values to rank association rule. Quantitative 

association rules mining [7] [8] introduce statistical 

inference theory into data mining field to find 

extraordinary and therefore interesting phenomena in 

database. 

Weighted association rules gives up treating all 

the items and all the transactions uniformly by 

assigning different weights to items [9] or 

transactions [10]. These weights essentially reflect 

users’ preferences. [10] also proposed a mixed 

weighted association rules model, which incorporate 

both vertical weighted association rules and 

horizontal weighted association rules.  

Shen Y. D. proposed an objective-oriented 

apriori (OOApriori) model [3]. He puts utility 

constraint into apriori algorithm so that some 

frequent high utility itemsets could be found.  Chan 

R. et al. also proposed a utility mining algorithm to 

mine top-k frequent high utility closed patterns [11]. 

To reduce search space, he developed a new pruning 

strategy based on a weaker but anti-monotonic 

condition to prune low utility itemsets. 

Barber B. uses itemset share as a measure to 

overcome the shortcoming of support [12]. Item 

share is defined as a fraction of some numerical 

values. It can reflect the impact of the sales quantities 

of items on the cost or profit of an itemset, it should 

be regarded as a utility. 

A formal definition of utility mining and 

theoretical model were proposed by Yao H [1] [13]. 

In his UMining algorithm, utility upper bound 

property is used to reduce the size of candidate set. 

In order to narrow search space furthermore, support 

upper bound property is used in a heuristics model to 

predict whether an itemset should be added into the 

candidate set. Unfortunately, the heuristics mode 

can’t guarantee an accurate prediction. Yao H also 

summarized the mathematic properties of utility 

constraint in [4]. Liu Y. proposed a two-phase 

algorithm to mine high utility itemsets [14]. In Liu’s 

model, transaction weighted downward closure 

property is used to reduce search space. 

  

 

3 definitions 
Utility of an itemset is a subjective term dependent 

on user and application; it could be measured in 

terms of profit, cost, risk, aesthetic value or other 

expressions of user preference. For easy understand, 

we refer to utility of an itemset as the economic 

utility such as sales profit. 

Let I={i1, i2, …, im} be a set of items, D={T1, 

T2, …, Tn} be a transaction database. Each 

transaction Tq in database D ( DTq∈ ) is a subset of I, 

i.e., ITq ⊆ . To simplify notation, we sometimes 

write a set { i1, i2, …, ik } as i1 i2 … ik. Adapting from 

the notations described in [1], [14] and [15], we have 

following definitions: 

Definition1. The transaction utility of item x in 

transaction Tq, denoted )T,x(u q , is the utility 

brought on by item x when transaction Tq occur. 

Take example for table 1, u(A,1)=0, u(A,2)=2. 
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Definition 2. The transaction utility of itemset X in 

transaction Tq, denoted )T,X(u q , is the sum of 

transaction utility of item x contained in X, i.e.,  

∑
⊆∧∈

=
qx TXX

qq (1)    )T,x(u)T,(Xu  

For example, in table 1, u(AB,2)= u(A,2)+ u(B,2) =5, 

u(ABC,5)= u(A,5)+u(B,5)+u(C,5) =4+5+8=17. 
Definition 3. The partition utility of itemset X in 

partition Pi , denoted )P,X(u i , is the sum of the 

transaction utility of itemset X in partition Pi, i.e., 

(2)    )T,X(u),(
qiq TXPT

q∑
⊆∧∈

=iPXu . 

For more details about partitions, refer to [15]. 

Definition 4. The utility of X in database, 

denoted )X(u , is the sum of transaction utility of 

itemset X in database, i.e., 

)3(    )T,X(u         

)P,X(u)(

qq

iiqq

TXDT

q

DPPTTX

i

∑

∑

⊆∧∈

⊆∧∈∧⊆

=

=Xu

 

Examples can be seen in section 1. 

Definition 5. The utility of transaction Tq, denoted 

)T(u q , is the sum of transaction utility of item x in 

transaction Tq, i.e., 

)4(   )T,x(u)(
qTx

qq ∑
∈

=Tu  

Definition 6. Transaction identifier list, denoted 

tidlist, is a set of transaction ID. 

Definition 7. Intersection transaction, denoted 

T(tidlist), is an itemset obtained by the intersection 

of transactions listed in tidlist. For example, let 

T1=ABDF, T2=ADFG, then intersection transaction 

T(1,2)=T1∩T2=ADF, corresponding tidlist is {1,2}. 

If |tidlist|=k, T(tidlist) is also called k-intersection 

transaction, k is called the current support of 

k-intersection transaction. Pay attention to the 

difference between current support k and support s. 

the support of an itemset is the maximal number of 

transactions containing the itemset, while current 

support is the number of parts of the transactions. 

Definition 8. A long transaction is the transaction 

that includes more than minlen items. minlen is a 

user defined value. Otherwise, called short 

transaction. 

Definition 9. A high utility itemset is the itemset 

with utility value higher than a user specified 

threshold, i.e., minutil. Otherwise, we say the itemset 

is low. 

Definition 10. A long high utility itemset is the high 

utility itemset with length longer than minlen. 

Definition 11. A locally high utility itemset is an 

itemset in partition pi with partition utility value 

higher than the local utility threshold minutil/n. n is 

the partition number. 
 

 

4 Inter-transaction algorithm 
As we know, each itemset is determined either by a 

transaction or by a group of transactions. If we let 

any two transactions intersect each other, we can 

obtain all itemsets (2-intersection transactions) with 

support higher than 2. Similarly, we can obtain all 

itemsets (k-intersection transactions) with support 

higher than k by intersecting any k transactions 

(1≤k≤N, N is the number of transactions). 

Theoretically, we can obtain all itemsets by 

intersecting relevant transactions. 

In real database, transaction number N can 

easily reach to several millions and there will be 2
N
 

intersection transactions at the worst situation! To 

solve the problem, two methods are used in our 

algorithm. One is to divide database into multiple 

partitions with each partition containing fitting 

amount of transactions, then build a global candidate 

set from locally high utility itemsets, and finally test 

the entire candidate set, just like that described in 

[15]. The correctness of the partition method is 

guaranteed by following lemma: 

Lemma suppose D is a transaction database, 

P=P1P2, …, Pj is a set of partitions of D. If IX ⊆ is 

a high utility itemset, it appears as a locally high 

utility itemset in at least one of the partitions. 

Proof. Let X be a high utility itemset, then u(X)

≥minutil. Divide D into n partitions, then X may fall 

into m partitions (1 ≤ m ≤ n). Assume 

B=Max(u(X,Pi)) denote the biggest utility value of X 

in all partitions, By definition 4, we have 

mB)P,X(u)X(u
DPPTTX

i

iiqq

≤= ∑
⊆∧∈∧⊆

 

If
n

minutil
B < , then 

 minutilminutil
n

m
)X(u ≤<  

But this is a contradiction.  

Another method is to filter out all short 

(intersection) transactions. The rational behind the 

method is that short transactions have no effect on 

the support and utility of long itemsets. Since the 

intersection of long transactions is usually very short, 

large amount of short intersection transactions will 

be pruned out in time. This is why our method is so 

efficient for long patterns. 

But how should we choose the number of 

partitions? Let u be total utility value, and coefficient 

a  be the minimum acceptable ratio of the utility 

value of an itemset to the total utility value in the 
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database. Suppose we divide the database D into n 

partitions, the local utility threshold 

(
nn

minutil ua ∗
= ) should be far larger than the 

average transaction utility (
N

u
), denoted 

as
N

u

n

u
>>

∗α
. Otherwise, large amount of locally 

high utility itemsets would be generated. Let S be 

partition size, we have: 

(5)  
1

an

N
S >>=  

Inequation (5) contradicts the goal of partition 

method (reducing the amount of intersection 

transaction in a partition). Experiments show that it’s 

applicable for S to be between 
a

5 and 
a

10  in the 

context of our datasets.  

Inter-transaction can be described as follows: 

Input: A transaction database D, minutil, minlen 

Output: All long high utility itemsets. 

Method: 

1. Divide database D into n partitions; 

2. For every partition Pi∈D, call Subroutine  

gen-LHU-itemsets to obtain all locally long high 

utility itemsets; 

3. Obtain a candidate set C by union of all locally 

long high utility itemsets; 

4. Scan the database again to calculate the utility 

and support of each itemset c∈C. if utility value 

c.utility≥minstil, output its utility and support; 

 

The algorithm is very similar to partition 

algorithm [15], one of the main differences between 

them is that the former seeks balance between 

keeping a higher local utility threshold and reducing 

the amount of intersection operation, while the later 

choose partition size in terms of main memory size, 

such that at least those itemsets and other 

information that are used for generating candidates 

can fit in main memory.  

Gen-LHU-itemsets is responsible for generating 

locally long high utility itemsets in a partition. In the 

subroutine, tidlist is used to record which 

transactions are involved in an intersection 

transaction. If s(T(tidlist)) and u(T(tidlist)) represent 

the current support and utility of T(tidlist) 

respectively, T(tidlist).tidlist represents transaction 

identifier list associated with T(tidlist), let tidlist= 

tidlist1∪tidlist2 (tidlist1≠tidlist2), we have: 

(6)  )T(tidlist2)T(tidlist1              

 tidlist2)T(tidlist1  T(tidlist)

∩=

∪=
 

(7)  tidlist2 tidlist1.tidlist T(tidlist) ∪== tidlist  

(8)  |tidlist2tidlist1|                  

|.tidlist T(tidlist) |t))s(T(tidlis

∪=

=
 

(9)  )),((tidlist)t),u(T(tidlis ∑
∈

=
tidlistTq

qTtidlistTu  

To compute the utility of an itemset in a 

k-intersection transaction, we assume all the 

transactions listed in tidlist form a partition, so that 

we can use equation (9) to compute the utility, which 

stems from equation (2). The subroutine is described 

as follows: 

Input: A partition Pi, minutil, minlen 

Output: All locally long high utility itemsets in Pi. 

Method: 

1. Take a partition Pi and calculate the utility of 

each (intersection) transaction independently 

according to equation (4) for individual 

transaction or equation (9) for intersection 

transaction. If u(Tq)≥ minutil/n, put Tq into 

candidate set, call subroutine mine_single_trans; 

2. Perform all the intersections of any two 

(intersection) transactions; 

3. If there is no long itemset, subroutine ends; 

4. Prune out all short intersection transactions, 

merge repetitious intersection transactions, 

update corresponding tidlist according to 

equation (7). go to step 1; 

 

Subroutine mine_single_trans tries to discover 

all locally long high utility itemsets an intersection 

transaction contains. It can be described as follows: 

Input: Tq, minutil, minlen 

Output: All locally long high utility itemsets in Tq 

Method: 

1. Sort the transaction Tq decreasingly by its utility 

value: Tq= t0 t1 t2 … tk-1 tk 。 。 。 tL-1, 

satisfying ))(T,t(u)T,t(u qq jiji ≤≥ ;  

2. Let k=L-1; 

3. p=0;  // position of the first item of X in Tq 

4. Let X=tptp+1…tp+k-1. if u(X) ≥minutil/n, add X 

into candidate set, go to step 5, otherwise, 

subroutine ends; 

5. For j=1 to k do begin 

6.   Count=0； 

7.   For i=p to L-k-1 do begin 

8.     Replace tk-j in itemset X with tk+i，obtaining 

a new itemset X’. If u(X’)≥minutil/n，add X’ 

into candidate set, count increases by one; if 

u(X’)<minutil/n，break (exit loop)； 

9.   End； 

10.   If count=0，break； 

11. End； 
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12. If there isn’t any high utility k-itemset, 

subroutine ends; if all the k-itemsets verified in 

step 8 are high utility itemsets，p increases by 

one, go to step 4 until all the k-itemsets are 

verified;  

13. Let k=k-1, go to step 3, until k=minlen 

 

The subroutine uses Quick Sort method to sort 

the items descendingly by utility value so that we can 

produce and check only necessary itemsets, pruning 

out low utility itemsets as many as possible. Suppose 

Yi=X∪ti, Yj=X∪tj, if i<j, then u(Yi) >u(Yj). if Yi is 

low, Yj must be low. Furthermore, if all the 

k-itemsets are low, all (k-l)-itemsets must be low 

(1≤l≤k-1). Following example can show how 

mine_single_trans works: 

Let Tq=ABCDEF, corresponding utility values 

are 6, 4, 5, 1, 3, 2. After sorting, Tq can be expressed 

as ACBEFD, relevant utility values can be write as 

U=654321. Here the length of Tq is 6, i.e., L=6. if 

minutil=18, minlen=3, itemsets will be examined in 

the order shown in table 2.  

 

Itemset Utility comments 

u(ACBEF)= 20 add ACBEF to Hi 

u(ACBED)= 19 add ACBED to Hi 

u(ACBFD)= 18 add ACBFD to Hi 

u(ACEFD)= 17 stop finding 5-itemsets 

u(ACBE) =18 add ACBE to Hi 

u(ACBF) =17 stop finding 4-itemsets 

u(ACB) =15 Algorithm end 

 

Table2. The process of calculating utility 

 

According to step 1) of gen-LHU-itemsets, only 

a small amount of (intersection) transactions need to 

call the subroutine and thus won’t cause high 

computational cost.  

 

 

5 Experimental results 
All the experiments were performed on a 2GHz 

XEON server with 2GB of memory, running 

windows 2003. Program was coded in Delphi 7. The 

synthetic databases used in our experiments are 

T40.I30.D8000K with the number of items varying 

from 0.5k to 4K, which were generated by IBM 

quest data generator [16]. Because the generator only 

generates the quantity of 0 or 1 for each item in a 

transaction, we use Delphi function “RandG” to 

generate random numbers with Gaussian distribution, 

which mimic the quantity sold of an item in each 

transaction.  

Figure 1 shows that our algorithm scales linearly 

with the number of transactions. Figure 2 shows the 

performance when varying the number of items. 

Different from other algorithms, the performance of 

inter-transaction increases with the increase of the 

number of items. In figure 3, minlen is the minimum 

length of itemsets the algorithm can discover within 

a reasonable time. The experiment result indicates 

that the larger the number of items, the smaller the 

minlen, and the less the tasks left for its cooperator 

such as UMining. That’s to say, inter-transaction can 

complete more works in a sparse dataset. Figure 4 

shows the execution time decreases as the utility 

threshold increases.  
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Fig.3 Effect of item number on minlen       Fig.4 Scalability with threshold                               
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6 conclusions 
The paper decomposes the mining task into two parts 

(mining long high utility itemsets and short high 

utility itemsets) and emphasize on introducing a 

partition-base, top-down algorithm, i.e., 

inter-transaction, to discover long high utility 

itemsets. Besides the inherent advantages of partition 

algorithm [15], the new algorithm can obtain long 

itemsets directly from the intersection of relevant 

long transactions, without extending short itemsets 

step by step. In addition, new pruning strategies are 

used to cut down search space. It is very suitable for 

large high dimensional data. 

Data skew, number of items and parameters 

such as threshold minlen affect its performance. How 

to choose threshold minlen is relevant to the hybrid 

model, and it’s our future work. 
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