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Abstract: Fractional Bessel processes are defined and considering the processes associated with fractional

Bessel processes

X, 0= 'sign(B,, (s))dB,, (t),% <H<I

Y, (6) = Zj

=By (1), B, (2),...,

where By,

—ZH_4BJ(s)

H()

B,(d)) is a d—dlmenszonal (d 22) fractional Brownian motion with Hurst

parameter 0<H<I and R,

= \/BH () +B,(2)* +...+ B,,(d)* is fractional Bessel Process driven by

fractional Brownian Motion, some of their properties are given.
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1 Introduction

First we will give the definition of Bessel
processes and Fractional Brownian Motion.
For every & = 0 and x = 0, the solution to the
equation

X, =x+a+2[ |X |aw,

is unique and strong. In the case 6 =0, x = 0, the
solution X, is identically zero and applying the

t

comparison theorem (see Revuz—Yor [11] Theorem
IX.(3.7)) we conclude X, >0 forall 6 20.

Definition 1 (BESQ® ) Forevery 6 >0 andx = 0
the wunique strong solution to the

X, =x+a+2[ |X |aw,

is called the square of a 5-dimensional Bessel process
started at x and is denoted by BESQ” .

Remark: the law of BESQ’(x) on C( R, ,R )by

equation

Q° . We call the number & the dimension of BESQ .

This notation arises from the fact that a BESQ’

process X, can be represented by the square of the

Euclidean norm of d-dimensional Brownian motion

B:X, = ||B[|2| . The number v=6/2—1 is called
the index of the process BESQ’ .
Definition 2 ( BES° ) The
ofBESQ‘s (a*), 5>0,a>0 is called the Bessel
process of dimension o started at ¢ and is denoted
by BES’(a).

Remark: the law of BES®(a) by P’

In the case § >2, BES‘s(a) ,a >0, will never reach 0.
For 6 > 1 a BES’(a) process Z,

square root

satisfies

E[.[Ot(ds/Zs)]<oo and is the solution to the

equation
o—1¢d
Z, =a+—— - W,
2 N7,
For ¢ <1 the situation is less simple. For 6 = 1 we
have with Ito Tanaka’s formula

=W =W, +L,
where VIN/t = .[Ot sign(W,)dW, is a standard Brownian

N

motion, and Lt is the local time of Brownian motion.
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Refer to Revuz—Yor [11] and Pitman—Yor [9, 10] for
the more study of Bessel processes.
Definition 3 (fBm) Let H €(0,1) be a constant.

The (1-parameter) fractional Brownian motion
(fBm) with Hurst parameter H is the Gaussian

process B, (t) =B, (t,w),t e R, € Q
B,(0)=E[B,(t)]=0,forall teR.
and

1, 20 2H
E[B,(s)B,(1)] = > s +4

, satisfying

—|s—t|2H};s,t eR

Where E denotes the expectation with respect to the
probability law P for {B, (t,w);te R,w e} ,
where (Q, F') is a measurable space.

If H = 1/2 then B, () coincides with the classical
Brownian motion, denoted by B(¢).

If H> 1/2 then B, (t)is persistent, in the sense that
p,=E[B,(1)-B,(n+1)=B,(n)]>0 for all n =
L2,...

and ipn:oo

n=l1
If H < 1/2 then B, (¢) is anti-persistent, in the sense
that
p, <0 foralln=1,2,...

in this case Y p, <oo (Shiryaev [5], p. 233)

n=1
Another important property of fBm is
self-similarity: For any H €(0,]) and a >0 the

law of {B,(at)},., is the same as the law of

@By (O}

Definition 4 Denote the fractional Bessel process by
R, =B, ()> +B,(2)* +..+ B, (d)’

B, =B,1),B,(2),....,B,(d)) be a
d-dimensional fractional Brownian motion with
Hurst parameter H € (0, 1).

We hope to obtain a stochastic calculus for fBm and
to use its properties into application.

if H#1/2 then B,(¢f) is not a
semimartingale, so we cannot use the general theory

where

However,

of stochastic calculus for semimartingales on B, (¢) .
For example, as H #1/2 the fractional Brownian
motion B, (¢) hasnot Lévy type characteristic, i.e.,
the process (see Hu [7])

, 1
X, = jo sign(By (B, (5), < H <1
(1.1)

is not a me Furthermore, the process
—4 4B/ 5 (s)

Y, ()= Z’
IR() (12)

is the fractlonal Bessel process. Thus, it is interesting
to investigate the properties of these processes. Hu
and Nualart obtained some properties of these
processes in [7].

The purpose of this paper is to prove the local times
of these processes based on B, (t) exist,

1/2 <H < 1. Moreover, we give a Tanaka formula of

the process Xy given by (1.1) and (1.2).

2  Fractional [0 stochastic

integral

For 1/2 < H < 1, an alternative integration theory
based on the Wick product < was introduced by [3],
as follows:

Jy(s)dByy (5) = lim > u(t,)0(B,, (1) = By (1))

type

Where 7,:0<¢,<t, <..<t =t is an arbitrary

partition of [0, t], =, :=max,{t, —¢} and

lim‘ﬁ (5o Means the limit in L* (). The definition of
the integrals has been extended by [8] (see also [1]) to

all 0 < H<1 as follows:
.[0 u(s)dB,, (s) = J. u(s)W,,, (s)ds

dB (” e (S)" with (S)" the Hida

where W, (¢) =
space of stochastic d1str1butions if

u : R, —(S) satisfies that u(t) & W'(¢t) is
dr-integrable in (S) . These fractional /#6 integrals

have many properties of the classical [t0 integral.
Recall that the Malliavin @ -derivative of the
function U : QQ — R defined in [3] as

follows:

DU = [ ¢(r,5)D,Udr
where D U is the fractional Malliavin derivative at
r. Define the space L;” to be the

set of measurable processes u such that D?u(s)

exists for a.a. s >0 and
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E[(J‘ Dfu(s)ds)z +J‘ .[ u(s, (s, )@(s,, s, )ds,ds, ] Theforem 3.1. L§t @ :R" — Rbe aconvex function
0 0 Jo having polynomial growth and let

<0 the process X, be defined by
t
o X, (@)= sign(B,(s))dB,(s),t >0 Then there
Then the integral J.O u(s)dB, (s) can be well # () J.O gn(By (s)MdBy (5)

) exists a continuous increasing process A® such that
defined as an element of L (1) DX, (1)) = D(0) +

Theorem 2.1 ([3]). Let {u(?),# >0} be a stochastic

process in Llf . Then for the process

=" u(s)dB, (s 120
) jo (s)dB, (s) where D™ ® denotes the left-hand derivative of @
we have Proof: If ® € C?, then this is the /t6 formula and

Din() = .[0 u(r)dBy (r) + J.o u,§(s,r)dr A" = JZ@"(XS )sign(B,, (s))D,, X, (s)ds

In particular, if u is deterministic, then

jo D (X, (s))sign(B,, (s))dB,, (s) + % A%120

; and Lemma 3.1 implies that the process A is
Dfﬂ(f):.[o u(r)p(s,r)dr increasing.

2
Letnow® £C" For € >0 and ¥ € R e set

1
3 Local Time and Tanaka Formula p.(&)= o e
Refer to [9], the weighted local time L(B,,) of and
fractional Brownian motion are established:
®,(x)= [ p, (x= D)y, (s > 0)

L(B,)=2H jo S(B,, (s)—x)s>"\ds

Then @, (x) has polynomial growth and®, € C*.
The Tanaka formula is given as:

t 1 It follows that for all &£ > 0 there exists a continuous
(B,(t)—x)" =x"+ IO Ly (o dBy () + ELf (B,) increasing process A” such that
O (X,0)=D,(0)+

| B, (1) — x| x| +J.0t sign(B, (s))dB (s)+ L;(By) .[th)'g (X (s))sign(B, (s))dB, (s) +%At®£

and
In this section we show that the local times of the o S )
process AP = [[@,"(X (5))sign(B, (s)Dy X ; (5)ds
X, = jo sign(B,, (s))dB,, (s),t = 0
t .
N Y = [, @, [ SCX () = X)(sign(B, (s)Dy X  (s)ds)dx
SR ‘
exist and obtain their Tanaka formula. Noting that for all x € R

Iim®, (x) =d(x) limd', (x) =D D(x
Lemma 3.1 (Hu [7]) &30 - () ) , eloF *) )
Elsign(B,, (s))sign(B, (u))] Soas € = 0.

+ L H

e 420 (s +u _|S _u|2k 1) 50 .[0 D' (X, (s))sign(B, (s))dB, (s)
2 Qk+D)27(k25)? (su) PR T
We can get the proof of this Lemma in [7]. By using
this Lemma its easy to show the following result in probability. As a result, A:D*f converges also to a

holds
Lemma 3.2 Let 1/2< H <1, then

sign(B,, (t))D,; X, (t)=0,a.s forall t > 0.

- .[Ot D ®(X,, (s))sign(B, (s))dB, (s)

[0} . .. . .
process A~ which, as a limit of increasing processes,
is itself an increasing process and



(X, (1)) = D(0) +
J| DO ())sign(B, (1B (5) + A

The process A” can now obviously be chosen to be
a.s. continuous. This completes the proof.

Corollary 3.1. For any real number x, there exists an
increasing continuous process

L'(X,) called the local time of the process X,

given by (1.1) in x such that,
| Xp (1) — x|

= |+ jo sign(X ,, (s) = x)dX ,, (s) + L' (X ")’

Combining this corollary with [3, 9], we get the
following

Corollary 3.2. Let L(X) denote the local time of
the process X and let

L/ (By,)= 2H.[0t S(B,, (s)—x)s*"ds

be the weighted local time of fractional Brownian
motion B,, . Then we have

Lf(XH)_Lf(BH)

=[x, (6)— x| = |B, (1) -

+2[ 1y o,y sign(By, (s) = x)dB,, (s)

Corollary 3.3. For any real number x and ¢ >0, we
have

L(X,)
= [ 80X, ()~ x)sign(B,, (D, ()X, (s)ds

Moreover, for any convex function having

polynomial growth® : R* — R the following
Ito-Tanaka type formula holds:
DX, (1)

= ®(0)+ [ D™O(X,, (5))sign(B,, (s))dB,, (s)

2 B (@)

where D~ @ denotes the left derivative of @ and the
signed measure £/, is defined by

Uy ([a,0]) =D D(b)— D ®(a),a<b,a,beR
Finally, by the same method on can show that the
local time of the process

Y, ()= Zj

R G )dB’ 7 (s)
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holds, where B,, =(B,(1),B,(2),....B,(d)) is a
d(=2) dimensional fractional Brownian motion
with Hurst index 1/2 < H <1 and

R, =B, ()>+B,(2)* +..+ B,(d)* is the

fractional Bessel process.

4 Conclusion

It can be seen from the above-mentioned analysis
that the processes associated with fractional Bessel
processes

X, 0= "sign(B,, (s))dB,, (t),% <H<I
—2H_gB (s)

Y, () = ZJ’R()

=(B,(1),B,(2),....,B,(d)) converge,
have the local times L*(X,,) and Ito-Tanaka type

formula
DX, (1)

where B,

= (0)+ [ DX, (s))sign(B, (s)dB, (s)

i
2 [ 1 X ()
holds.
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