

Software for Structured Text Entities Dependency Graph Building

ION IVAN, MARIUS POPA, CATALIN BOJA, CRISTIAN TOMA, DRAGOS ANASTASIU

Economic Informatics Department
Academy of Economic Studies

Romana Square No. 6, Bucharest
ROMANIA

Abstract: The current work, presents the concepts for application for structured entities evaluation creation. It
describes internal data structure along with the object-oriented techniques used for the implementation. Methods and
properties description are also presented. The presentation is tackling software-building process from abstract
concepts to concrete implementation.

Key-Words: text entities, graph, data structures, software, statistic analysis

1. The graph structure and its
dependency characteristic
The graph is a highly flexible structure with very big
data representation potential and it is used as the base
technique for data structuring in the presented software.
The base component of a graph is the vertex, which is
referenced within the application as GraphNode. Using
template classes so that a high level of extensibility is
achieved when using recursion does the
implementation of the structure [1], [2].

When T is considered to be a predefined or a
user defined type, a collection of elements with the
mentioned type is called UnManagedNodeList. In
figure 1, a schematic representation of such structure is
presented.

T T T T ...

Fig. 1 UnManagedNodeList

A graph node is a container in which reside two
types of elements. The first one is the element called
INFO, which is a variable of type T representing the
informational part of the node. The referencing area
represents the second type, which is a dynamically
allocated area where pointers for the connected nodes
are held. The representation of GraphNode with
corresponding neighbors is presented in figure 2. The
Referencing area is itself a dynamically allocated list,
because a node can have none, one, or more than one
neighbor.

`

INFO

…

…

INFO

…

…

INFO

…

…

INFO

…

…

Fig. 2. Schematic representation of a GraphNode with

its connections

When building an UnManagedNodeList of type

GraphNode, all the elements in figure 2 are included in
every box represented in figure 1. In this way, when
accessing the first element of such construction, a
GraphNode element like one shown in figure 2 is
accessed, pointing to the main node, which has
connections to all other neighbor nodes. The presented
construction is called the GraphNodeList and it already
represents a graph with n entry points, where n
represents the number of elements that
UnManagedNodeList has. The implementation of the
structure is presented in figure 3.

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 224

Fig. 3. The graph structure implementation

The structure in figure 3 extends the concepts

to a list of generic graph objects. By using the auto
referencing technique, the graph structures becomes
even more complex and higher flexibility levels are
achieved when between the groups of GraphNode
objects belonging to different entry levels are
interconnected, but this comes with an increase in the
handling efforts, which are required for keeping the
structure solid.

2. Structured text entity
The purpose of the presented software is to analyze and
evaluate structured text entities. These are constructions
made of text that form from different input sources. In
the current work, the input is considered to be a series
of files, depending on the type of analysis that is made
on the corresponding structure.

The alphabet considered for evaluation is
ASCII. The vocabulary is formed out of words, each
representing a specific element in the analysis process.
The evaluation engine of the current software product
considers the word as a list of ASCII characters that is
dynamically allocated into the memory so that the exact
amount as needed is used [5]. The text entity is
structured according to the graph construction
presented in chapter 1, so that a word is a GraphNode
of type string. In the seen reality, a list of words forms
a sentence and the list of sentence represents the whole
text. In the same manner, the sentence is represented
like an UnManagedNodeList of words while the text
entity is an UnManagedNodeList of sentences. The
TextEntity structure implementation, based on the
Graph structure, is presented in figure 4.

Even though the graph structure is not
presented at its highest capacity, it is even higher then
needed to structure a text entity in a construction
formed out of words and sentences.

Fig. 4. The TextEntity structure implementation

The process of structuring takes place from an

abstract level to a more specialized level according to
the drawing in figure 5.

Word 1 Word 2 Word 3 Word wn …

Sentence 1 Sentence 2

Text Entity

…

…

Abstract
Level

Specialized
Level

P
r
o
c
e
s
s
i
n
g

Alphabet A b d f . g n r s t v w 2 , s 3 0 ! I j
3 2 ! d f n l s l 2 ? 3 k I o w f o 9
3 g I 3 k e ! . e ; 3 f ; 2 I I a e r

Fig. 5. The process of structuring from abstract to

specialized

On the abstract level, there is the alphabet

formed out of ASCII characters. The alphabet is then
included in a file representing the whole text entity.
The structuring begins at this level, from which
sentences are formed according to user defined
separators and then, in the same manner, the words,
which are according to the construction described, the
most specialized element that are taken into
consideration as a structure.

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 225

3. The structure of the software
product and the operation of graph
drawing
The software product is conceptually built on layers.
These are presented in figure 6.

1. Graph Layer

2. Text Entity Layer

3. Tools Layer

4. Solver Layer

Fig. 6. The layers of the software product

The Graph layer represents the structuring

mechanism and is the base for developing other layers.
It contains specific methods and algorithms for creating
and manipulating the complex and highly extensible
data structure presented in chapter 1.

On the Text Entity layer, the data structure
takes a more particular form, so that different text data
received as an input is organized according to the
structure with the desired level of accuracy. It is at this
layer where the classes presented in chapter 2 with
specific text manipulation methods and algorithms are
implemented.

For other operations that also have a
sufficiently big level of generality, the Tools layer is
created. It represents a container for algorithms like
file, data, windows and other elements manipulation,
which are generally applicable.

The Solver layer handles more problem
specific operations. Thus, for every type of problem, as
different output is needed, different algorithms must be
implemented and at this layer is where those algorithms
are created.

By building this software architecture, all the
operations are easily maintained, while hiding the
complexity by dividing the problem into many
modules.

This operation is implemented in the Text
Entity layer. In this manner, every Solver layer offers
through the Text Entity layer the drawing property for
reports generation improvement.

Graph drawing addresses the problem of
constructing geometric representations of graphs.
Although the perception of how good a graph is in
conveying information is fairly subjective, the goal of

limiting the number of arc crossings is a well-admitted
criterion for a good drawing [8].

Incremental graph drawing constructions are
motivated by the need to support the interactive updates
performed by the user. It is helpful to preserve a
"mental picture" of the layout of a graph over
successive drawings. It can be distracting to make a
slight modification, perform the graph drawing
algorithm, and have the resulting drawing appear very
different from the previous one. Therefore, generating
incrementally stable layouts is important for many
applications. Layout strategies that strive to preserve
perspective from earlier drawings are called
incremental [1], [2], [8].

The graph drawing property is implemented
through the function Draw that has the following
prototype:

public Graphics Draw (ref Graphics g,

int height,
int width,
bool
horizontal)

Where:
• g represents the Graphics surface where the

graph is drawn. The parameter is transferred by
reference, so that the calling object passes the
parameter and the Draw function modifies it;

• height is the variable received by value which
shows the maximum height of the drawing;

• width, represents an integer value which shows
the maximum accepted width for the drawing;

• horizontal is a Boolean parameter, which is
needed because the drawing algorithm is
incremental. When set to true, the parameter
shows that the graph has the vertexes
displacement horizontally, from left to right,
otherwise vertically, from top to bottom.

For the co-ordinates manipulation when it comes to bi-
dimensional drawings, the following structure and class
are created:

• Corner structure for representing a corner,
because each node is displayed within the
drawing as a rectangle. The structure has a
static method for computing the distances
between two corners. With this structure, the
nearest corners for two rectangles are found, in
this way being able to draw the axes without
overwriting the nodes. The returned type is a
corner, where on X property, there is the
difference between the X parameters of the two
corners, and on Y property, the difference
between Y parameters of the corners. The
prototype of the function is:

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 226

public static Corner Difference
(Corner corner1, Corner
corner2)

• NodeCoOrdinates class for co-ordinates

manipulation, with the components description
presented in table 1. When instantiating a
NodeCoOrdinates object, the parameters
needed are the left-top corner and the length of
the text, while other corner are automatically
calculated, considering a default value for the
text height.

Table 1 Description of NodeCoOrdinates Class

components
Property

Name
Property

Type
Access
Level

Descriptio
n

CornerLB corner public Gets the
left-bottom
corner

CornerLT corner public Gets the
left-top
corner

CornerRB corner public Gets the
right-
bottom
corner

CornerRT corner public Gets the
right-top
corner

List Collection<
corner>

public Gets the
collection
of corners

The NodeCoOrdinates class serves as a

container for the 4 corners placement into the bi-
dimensional space. In this way, the Left-Bottom, Left-
Top, Right-Bottom, Right-Top values are assigned and
requested by accessing the properties of the presented
class. Every corner has 2 parameters, because the
drawing space is bi-dimensional, and because of this,
the corner class is also nested into the
NodeCoordonates class

4. The operation of statistic analysis
and evaluation
The statistic analysis is an operation that takes place on
the Solver layer. The environment in which the
operation takes place is described in [4].

Thus, the input data consists of tables of data
in which a number of students in the terminal year
introduce data representing the order in which they
would have wanted to learn the disciplines for better
understanding. For this, a number of classes of objects
are created:

• Discipline class for the disciplines which are
analyzed, with the components description
presented in table 2;

Table 2 Description of Discipline Class

components
Property

Name
Property

Type
Access
Level

Description

name String private Holds the
name of the
discipline

Discipline
Name

String public Gets or sets
the name of
the discipline

• DisciplineSTUDy class for other algorithms

and needed operations implementation, with
the class components description presented in
table 3;

Table 3 Description of DisciplineSTUDy Class

properties
Property

Name
Property

Type
Access
Level

Description

Disciplines BindingList<
Discipline>

public Gets the
binding list
of the
discipline

NoDisciplines int public Gets the
name of the
discipline

NoStudents int public Gets the
number of
students

Table DataTable public Gets or sets
the input data
table

 Within the DisciplineSTUDy class, the
following methods are implemented:

• public TextEntity Compute
(Scoring scMethod,
ScoringInterpretation
scIntMethod) for computing the input
data,

where:
• scMethod represents the delegate for

establishing a score which is assigned for every
discipline, based on the input data;

• scIntMethod is a delegate for interpretation of
the established score.

The delegates are declared as follows:
• public delegate int[] Scoring (

int[,] indexes) for the Scoring type,
where indexes are the values of the student
options from which the score is calculated and

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 227

return by the Scoring typed delegate. For
example, for the fist discipline in the database,
the index is 1, for the second, the index is 2;

• public delegate TextEntity
ScoringInterpretation (int[]
scores), where scores are obtained
through the Scoring function and returns the
interpretation whithin a TextEntity object that is
to be further displayed as a graph.

The DisciplineSTUDy class also provides a method for
drawing called Draw, which actually calls the method
with the same name of the resulted TextEntity object.

• public void Save (), for saving the

disciplines at one moment, without the
analysis, which is stored in an object that
belongs to the TextEntity layer.

Output data for the operation is the order in

which the students should learn the disciplines for
better understanding. In order to show as many
information as possible, the output is displayed in a
form of a bi-dimensional graph, which shows all the
dependencies between the disciplines. In [4] the
software is tested with 5 input data sets. The analysis is
statistical because the input data is treated statistically,
by using the Scoring and ScoringInterpretation
delegates.

5. The operation of referential
analysis and evaluation
In the referential evaluation operation, dependencies
between entities are established. In [4], the case of a
words or terms dictionary is analyzed.

Input data in this case, is represented by one
or many definitions, each one including the word or
term to be defined and the definition associated to it.
 The output data consists of the list with
general parameters presented in table no. 4 and the
graph drawing showing the dependency between the
words, as seen in [4].

Table 4 The list with general parameters considered as

output
Indicator Name

Total number of words
Total number of defined words
Total number of words used in definitions
Total number of words filtered

 For implementing the operation, the following
classes are developed:

• ResultIndicator class for creation and
manipulation of the output parameters. In this
manner, the indicators presented in table no. 4

are instances of this class. The properties of the
class are presented in table 5.

Table 5 Description of ResultIndicator class

properties
Property

Name
Property

Type
Access
Level

Description

IndicatorName string public Gets or sets
the name of
the indicator

IndicatorValue int public Gets or sets
the value of
the indicator

• TermDefinition class for creation and

manipulation of the definitions. Every
definition that is received as input data is
transformed into an object of this class. The
properties of the class are presented in table 6.

Table 6 Description of TermDefinition class properties
Property

Name
Property

Type
Access
Level

Description

Definition string public Gets or sets the
section
represented by
the words that
define the term

Word string public Gets or sets the
term that is
defined

TermDefinition as well as ResultIndicator

classes are constructed for better input and output data
manipulation while developing the computing engine
and also for interface implementation improvement, by
creating BindingList objects that are managed and
maintained in the .NET 2.0’s DataGridView object.

• DictionaryAnalysis is the core class for the

analyzing process. The properties of the class
are presented in table 7.

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 228

Table 7 Description of DictionaryAnalysis class
properties

Property Name Property
Type

Access
Level

Description

computed bool private Variable that is
used for
determining
whether the
analyze has
been done or
not

dict BindingLi
st<TermD
efinition>

public Variable
representing
not filtered
input data
dictionary

dictFiltered BindingLi
st<TermD
efinition>

public Variable
representing
the filtered
dictionary
received as
input data

drawnWord string private Variable
representing
the word for
which the
analyze is done

result TextEntity private Variable
representing
the TextEntity
that is ready to
be drawn

resultIndicators BindingLi
st<ResultI
ndicators>

public variable
representing
the resulted
indicators

TE TextEntity private The TextEntity
with input data

 The methods used by the objects of the class
are:
• private void Add (

TextEntity.Word wrd, int idxS,
bool error), for adding a word into the
text entity that must be displayed as an
evaluation result in shape of a graph. The
adding is done according to the way that the
graph is prefered to be displayed and because
of this, the method is implemented at the
Solver level, and not at the TextEntity level.
The parameters are:

o wrd, which represents the word that is
added;

o idxS, representing the sentence index
for the position where the word is
added;

o error, which when set to true, indicates
that an error node is added and the

borders of the cell must be differently
colored;

• public void Compute

(BindingList<TermDefinition>
theDict, TextEntity.Filter
flt), for analyzing the dictionary received
as a parameter named theDict, representing the
input data, which is to be filtered according to
the defined filter flt;

• private

BindingList<TermDefinition>
Convert2Dict (), for converting the
private property TE into a dictionary which is
returned by the function;

• private TextEntity.TextEntity

Covert2TE(BindingList<TermDefin
ition> theDict), which is a function
for converting a dictionary received as a
parameter, named theDict, into a TextEntity
object which is returned by the function;

• public Graphics Draw (ref

Graphics g, string word, int
height, int width, bool
horizontal, bool compresed),
for drawing the graf out of the text entity that
results after analyzing the term received
through the parameter word. When the
parameter compressed is set to true, the
resulted graph has only the root and the leaves
at the first level. Other parameters are used for
sending them to the object implementing the
graph drawing operation, which is presented in
chapter 4;

• private TextEntity.TextEntity

ResultCompressed (), which is the
function for generating the so called
compressed text entity when the draw function
is called with the parameter compressed set to
true;

• public void Save () used for saving

the input data into XML files.

The referential analysis operation is tested in
[4] on 4 input sets and with different view-points on the
graph draw.

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 229

6. Conclusions
The presented software product aim is to offer

a base implementation of a data structure with large
extensibility potential so that any analytical operations
made on structured entities to be done in a very robust
manner. The presented approach, of considering a
structuring process, which integrates at a very low level
of the problem, offers the mechanism of solving
different types of problems that are though able to be
structured at a common level.

Because of the object-oriented programming
facilities, like interfaces, the choice of implementing
the structure and algorithms in C# language is a very
good one.

Through the deriving hierarchy, which travels
the distance from concept to example or from general
to particular, the possibilities that reveal tend to cover
many practical situations.

The presented approach outruns the strict
necessities for solving the presented problems and this
is done because the main purpose is not that to solve
specific problems, but to create a base framework for
structured entities research. The software is organized
on layers, so that any practical implementation can be
done on as many layers as desired. Thus, the graph
layer and the text entity layer offer the base, which is
able to hold many implementations. Further from this
point, the improvement of the base layers is desired,
along with many constructions, for which they stand as
root, which should be developed to ensure their
flexibility and robustness. Also, graph drawing
mechanism must be further improved and extended to
allow proper analytical operations to be done on
different types of structuring models.

Reference:

[1] Michael Goodrich, Roberto Tamassia, David
Mount, Data Structures and Algorithms in C++, John
Wiley & Sons Publishing House, 2003.
[2] Aaron Tenenbaum, Yedidyah Langsam, Moshe
Augenstein, Data Structures using C, Prentice-Hall
International Publishing House, 1990.
[3] Ion Ivan, Cătălin Boja, Metode statistice în analiza
software, AES Publishing House, 2004.
[4] Dragoş Anastasiu, The Study of Curricular
Dependency, Journal of Applied Quantitative Methods,
Volume 1, No. 1, Sept. 2006 – www.jaqm.ro
[5] Ion IVAN, Catalin BOJA, Cristian CIUREA,
Robert ENYEDI, Cristian TOMA, Marius POPA,
Collaborative Systems Metrics, International Workshop
in Collaborative Systems, Mediamira Science, pg. 120
– 146, October 2006.
[6] David BRÜLL, Björn SCHWARZER, Sebastian
OSCHATZ, Arnd STEINMETZ, A dataflow graph
based approach to web application development, The
Proceedings of the 10th WSEAS International
Conference on SYSTEMS Vouliagmeni, Athens,
Greece, July 10-12, 2006.
[7] Deniss KUMLANDER, Improving the maximum-
weight clique algorithm for the dense graphs, The
Proceedings of the 10th WSEAS International
Conference on SYSTEMS Vouliagmeni, Athens,
Greece, July 10-12, 2006.
[8] On-line Paper
http://www.uv.es/~rmarti/paper/gd.html

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 230

http://www.jaqm.ro/
http://www.uv.es/%7Ermarti/paper/gd.html

	Abstract: The current work, presents the concepts for application for structured entities evaluation creation. It describes internal data structure along with the object-oriented techniques used for the implementation. Methods and properties description are also presented. The presentation is tackling software-building process from abstract concepts to concrete implementation.

