
LMI Approach to Simultaneous Output-Feedback Stabilization for 
Interval Time-Delay Systems∗

 
Yuan-Chang Chang 1    King-Tan Lee2     

1Department of Electrical Engineering 
Lee-Ming Institute of Technology 

2-2, Lee-Juan Road, Tai-Shan, Taipei County, 243  
TAIWAN, R.O.C. 

2Department of Electrical Engineering 
Tamkang University 

151, Ying-Chuan Road, Tamsui, Taipei County 251 
TAIWAN, R.O.C. 

 
 
 

Abstract: - This paper considers the problem of simultaneously stabilizing output feedback controller design for a 
collection of interval time-delay systems. It is shown that this problem is solvable if a matrix measure assignment 
problem is solvable. Thus, in this study, we proposed to solve a matrix measure assignment problem to get a 
solution of the considered problem. We also proved that the admissible solution set of the matrix measure 
assignment problem is convex. Then, the matrix measure assignment problem is shown to be equivalent to a linear 
matrix inequality (LMI) feasibility problem. In term of LMIs, a necessary and sufficient condition for the existence 
of static output feedback controllers is obtained. Finally, an example is provided to illustrate the proposed 
methodology.  
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1. Introduction 
In this paper, the problem of simultaneous output 
feedback stabilization for a class of interval time delay 
systems is studied. It is known that time-delay often 
exists on linear and nonlinear systems such as 
chemical systems, electrical networks, hydraulic, and 
rolling mill systems. Since time delay is frequently a 
source of instability and poor performance, the 
stability problems of time delay systems have 
received considerable attention during recent decades. 

In general, the explicit mathematical model of a 
real system is hard to obtain. Usually, we can only use 
an approximate model with some uncertainties to 
represent the real system. The robust stability analysis 
problem for time delay systems with uncertainties is 
quite complicated and recently, has been studied via 

several different techniques. The criteria for 
asymptotic stability of such systems can be classified 
as delay-independent, which are independent of the 
size of time-delay, for example [7,8], or 
delay-dependent, which include information on the 
size of delay, for example [9,10]. Meanwhile, some 
different stability criteria have also been proposed via 
the LMI approach [12,13,15,16]. 

In [7-16], only robust stability analysis problem 
is considered. However, for a time delay system with 
uncertainties, which does not satisfy the stability 
criteria, the problem of how to define a controller such 
that the closed-loop systems is stable is not 
considered. More recently, in [1-3], the problem of 
designing robust state feedback or output feedback 
controllers for time-delay systems with uncertainties 
have been studied. However, they proposed a 
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feedback controller to stabilize only a single uncertain 
time delay system. The problem of simultaneous 
stabilization for a collection of uncertain time-delay 
systems via a single static output feedback controller 
is an important issue in the robust control theory. To 
the best of our knowledge, there are no general 
techniques for solving this problem in the literature.  

In this paper, we focused on the problem of 
simultaneous stabilization for a collection of interval 
time-delay systems via a static output feedback. It will 
be shown that the considered problem is solvable if a 
corresponding matrix measure assignment problem is 
solvable. The matrix measure is widely applied in the 
analysis of stability properties of uncertain and/or 
time-delay systems [4,5,14]. Although it has been 
widely employed in the robustness analysis problem, 
nevertheless, few has investigated about the controller 
synthesis problem; that is, for given matrices (A, B, 
C), how to find a matrix F such that μ2(A+BFC)<γ. 
As described in [11], there are no general techniques 
for solving this problem even in the case of C=I. 
Recently, linear matrix inequalities (LMI’s) have 
emerged as a powerful formulation and design 
technique for a variety of linear control problems 
[6,17,18]. Software like Matlab’s LMI Control 
Toolbox [18] is available to solve LMI’s problems in 
a fast and user-friendly manner. In this paper, we shall 
show that the matrix measure assignment problem is 
equivalent to an LMI feasibility problem. Thus, a 
controller solving the matrix measure assignment 
problem and then solving the simultaneous 
stabilization problem for a collection of interval time 
delay systems can be obtained via solving an LMI 
problem. 

 
Notations: 
 In what follows, O is a zero matrix with an 
appropriate dimension, I is an identity matrix with an 
appropriate dimension, MT denotes the transpose of 
the matrix M, M* denotes the conjugate transpose of 
the matrix M, M >0 ( ) means that the matrix 
M is positive definite (semidefinite), M <0 (

0M ≥
0M ≤ ) 

means that the matrix M is negative definite 
(semidefinite), and )*(|||| max MMM λ≡s  is the 
spectral norm of the matrix M. 
 
 
2. Problem Formulation and 

Preliminaries 
Consider a collection of interval time-delay systems: 

ˆ ˆ( ) ( ) ( ) ( )i i i i i i i ix t x t x t h u= + − +A D B� t
p

 ,  
1,2, ,i = …                  (1) 

( ) ( )i i iy t x t= C , 1,2, ,i p= …                 (2) 

where ( ) n
ix t ∈ℜ  is the state,  is the time-delay of 

the system, 
ih

( ) m
iu t ∈ℜ  is the control input, and 

( ) r
iy t ∈ℜ  is the controlled output. n m

i
×∈ℜB  and 

r n
i

×∈ℜC  are constant matrices. ˆ n n
i

×∈ℜA  and 
ˆ n n

i
×∈ℜD  are matrices whose elements vary in some 

prescribed ranges; e.g.,  and  are such that iÂ iD̂
ˆ [ ],      
ˆ [ ],      

ii i i
k

i
jkd

≤

≤

i jk jk jjk

ii i
i jk jkjk

a a a a

d d d

= ≤

= ≤

A

D
1,2, ,i p= …       (3) 

where  is the jk-th element of the matrix , i
jka iÂ

i
jka  and i

jka  denote its low bound and upper bound, 

respectively,  is the jk-th element of the matrix 

, and 

i
jkd

iD̂ i
jkd  and i

jkd  denote its low bound and 

upper bound, respectively. Those bounds i
jka , i

jka ,  
i
jkd , and i

jkd are known real values.  

 The design goal is to find a matrix F such that the 
static output feedback controller  
 )()( tytu ii F=   , pi ,,2,1 …=           (4) 
ensures all the closed-loop interval time-delay systems 
being asymptotically stable. 

We now introduce several properties about 
matrix measure as follows. The matrix measure of a 
constant matrix M is defined as 

 ( )
0

|| || 1
( ) lim v

v
θ

θ
μ

θ+→

+ −
≡

I M
M               (5) 

where ||.||v is a suitable matrix norm (see [5]). 
Lemma 2.1 [5]: The matrix measure has following 
properties. 
 (a). μv(.) is convex; i. e., 

 for all (
1 1

k k
v j j j jj j

μ α α μ≤∑ ∑
= =

⎛ ⎞
⎜ ⎟
⎝ ⎠

M M )v α j ≥ 0.  (6) 

 (b). For any norm and any constant matrix M 
|| || ( ) Re ( ) ( ) || ||v v vμ λ μ− ≤ − − ≤ ≤ ≤M M M M vM     (7) 

 (c). Suppose  is the ij-th element of M, then ijm

( ) max Re( ) | |1 m mjj ijj i j
μ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= + ∑
≠

M ,           (8) 

 *
2 ( ) max ( ) / 2ii

μ λ⎡ ⎤= +⎣ ⎦M M M ,            (9) 
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( ) max Re( ) | |ii iji i j
m mμ∞

≠

⎡ ⎤
= +⎢

⎣ ⎦
∑M ⎥ .            (10) 

 
 
3.  Main Results 
In this section, we first show that the considered 
problem is solvable if a corresponding matrix measure 
assignment problem is solvable. From (1), (2) and (3), 
the collection of closed-loop systems can be described 
as:  

ˆ ˆ( ) ( ) ( ) ( )i i i i i i ix t x t x t= + + −A B FC D� 1,2, , p= …h  , i  
( ) ( )i i iy t x t=C ,   1,2, ,i p= …

Denote 
[ ],   [i i

i jki jka a= =A A ] p,            (11) 1,2, ,i = …

[ ],   [i i
i ji jkd d= =D D ]k p,            (12) 1,2, ,i = …

and let 
1 1

2 2
( ),   ( )iDi i i ii= + = +A A A D D 1,2, ,= …, i p  (13) 

 ,   ,i i i i i i= − = −A N D D 1,2, ,i pM A = …      (14) 
where  and  are the average matrices of iA iD iA  
and iA , and of iD  and iD , respectively. 
Furthermore,  and  are the maximal bias 

matrices between  and , and between  and 
, respectively. Then, we have the following results. 

iM iN
ˆ

iA iA ˆ
iD

iD
 
Theorem 3.1: Suppose that the matrix F satisfies the 
following conditions  
 , 

                              (15) 
2 ( ) || || (|| || || ||)ih

i i i i i ieαμ α+ < − − − +A B FC M D N
1,2, ,i = … p

then the collection of systems 
ˆ ˆ( ) ( ) ( ) ( )i i i i i i ix t x t x t= + + −A B FC D� 1,2, , p= …h  , i       

 are all robustly stable with a decay rate 
       

α  ( 0α > ). 
Proof: This theorem can be easily been proved from 
the results of [14] or from the results of Lemma 2.1.         
            

                     

For simplicity of notation, let 

|| || (|| || || ||)
hiei i i i

α
γ α= − − − +M D N

p

,  

1,2, ,i = … ,                              (16) 
then (15) becomes 

2 ( )i i i iμ γ+ <A B FC 1,2, ,i p= …, .         (17) 
Therefore, this problem described by Section 2 is 
solved if the matrix measure assignment problem (17) 
is solved. Define  

{ }2( ) | ( )m r
i i i i i iγ μ×ℑ ≡ ∈ℜ + <F A B FC γ

p

, for 

1,2, ,i = … . The admissible solution set is 

1 1 2 2( ) ( ) ( )p pγ γℑ ≡ ℑ ℑ ⋅⋅ ⋅ ℑ∩ ∩ ∩ γ . Then, we can 
have the following theorem. 
 
Theorem 3.2: The admissible solution set ℑ  is 
convex. 
Proof: Sine the intersection of convex sets is convex, 
we only need to prove that ( )i iγℑ  is convex for each 
i.  
Assume 1 ( )i iγ∈ℑF  and 2 ( )i iγ∈ℑF , which means  

2 1( i i i ) iμ γ+ <A B F C  and 2 2( )i i i iμ γ+ <A B F C . 
Then, to prove that ( )i iγℑ  is convex is same as to 
prove 1 2(1 ) ( )i iα α γ+ − ∈ℑF F , or equivalently to 
prove 2 1 2( ( (1 ) ) )i i i iμ α α γ+ + − <A B F F C , for all 
0 1α≤ ≤ . Note that 
 2 1( ( (1 ) )i i i2 )μ α α+ + −A B F F C    
 2 1( (1 ) (1 )i i i i i 2 )iμ α α α α= + − + + −A A B F C B F C

2

 
 2 1( ( ) (1 )( ))i i i i i iμ α α= + + − +A B F C A B F C  

2 1 2 2( ) (1 ) (i i i i i i )αμ α μ≤ + + − +A B F C A B F C  
γ<  

This completes the proof.             
From the above discussions, it is concluded that 

the matrix measure assignment problem can be 
considered as a convex feasibility problem. Thus, we 
now turn our attention to reduce the matrix measure 
assignment problem to an LMI feasibility problem. 

For a matrix U, define  as a matrix whose 
columns form bases of the null bases of U. Then, we 
can have the following theorem, which is the main 
result of this paper. 

⊥U

 
Theorem 3.3:  
(1). The matrix F satisfies  
   2 ( )i i i i+μ γ<A B FC 1,2, ,i p= …

T T

, .     (18) 
if and only if F satisfies LMIs 

  2T T
i i i i i i iγ+ − + + <(A A I) B FC C F B 0 , 

          1,2, ,i p= … .                     (19) 
(2). There exists F satisfies (19) if and only if 
 ( ) ( 2 )( )T T

i i i i iγ⊥ ⊥+ − <B A A I B 0 1,2, ,i p= …,    (20) 
       and  
 ( ) ( 2 )( )T T

i i i i iγ⊥ ⊥+ − <C A A I C 0 1,2, ,i p= …

i

,    (21) 
Proof: We first prove part (1). From (9), it can be 
shown that 2 ( )i i iμ γ+ <A B FC , , are 
equivalent to  

1,2, ,i p= …
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 ,  * 2i i i i i i iγ+ + + −(A B FC ) (A B FC ) I 0<

i i i i i i iγ+ − + + <(A A I) B FC C F B 0 1,2, ,= …

1,2, ,i p= … .                        (22) 
which are equivalent to 

2T T T T , i p . 
This completes the proof of part (1). For the part (2), 
recall the result in [19]. Given a symmetric matrix 

 and two matrices U and V both with a 
column dimension n, there exists a matrix 

n n×∈ℜΨ
Θ  of a 

compatible dimension such that 
T T T+ +U V V UΨ Θ Θ < 0

0
  

if and only if  and .  T
⊥ ⊥ <U U 0Ψ T

⊥ ⊥ <V VΨ
Letting 2T

i i i iγ= + −(A A I)Ψ , , T
i i=V B i i=U C , 

and , the part (2) is obvious.  = FΘ
Theorem 3.3 tells us that if (20) and (21) hold, 

then there exists a matrix F that satisfies LMIs (19). In 
fact, such an F also solves (18). This means that if (20) 
and (21) hold, then the admissible solution set ℑ  is 
not empty. Note that a matrix F satisfying LMIs (19) 
can easily be obtained by using Matlab’s LMI Control 
Toolbox if  is not empty. The obtained F then can 
also solve the considered problem.  

ℑ

 
Remark 3.1: The approach described above can be 
applied to solve the simultaneous output feedback 
stabilization problem for a collection of uncertain 
systems: 

( ) ( ) ( ) ( )i i i i i ix t x tΔ= + +A A B� u t

i

, i=1, 2, …, p      
( ) ( )i i iy t x t=C , i=1, 2, …, p      

|| ||i ρΔ ≤A , i=1, 2, …, p          

where  is the state,  is the control 
input, and  is the output; and , , and 

 are constant matrices of appropriate dimensions. 
The design goal is to find a matrix F such that the 
static output feedback controller  

n
ix ∈ℜ m

iu ∈ℜ
r

iy ∈ℜ iA iB

iC

( ) ( )i iu t y t= F , i=1, 2, …, p         
can stabilize all the closed loop systems in the 
presence of uncertainty .  iΔA
   Since 2 ( )  iμ Δ Δ≤A Ai

i

, it is known that if we 
can find a feedback matrix F such that  
 2 ( )i i iμ ρ+ <A B FC − ,  i=1, 2, …, p       (23) 
then all the closed-loop systems are asymptotically 
stable. This problem can be easily solved via our 
approach. 
 
 
4.  Illustrative Examples 

Consider two interval time-delay systems 
described by (2.1)-(2.3) with the following data: 
System 1: 
  

3.8 5.6 3.5
4.3 19.1 19.2 ,  1

29.4 3.6 36.5

−
= − −

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A
4.6 4.2 4.5
3.7 22.9 16.8 ,  1

34.6 4.4 30.5

−
= − −

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A  

0.4 0.7 0.8
0.3 3.2 2.1 ,  1
3.3 0.5 2.3

− −
= − −

− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

D  
0.2 1.0 0.3

0.8 1.8 0.1 ,  1
0.7 0.5 1.2

− −
= −

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

D  

 
1 7
5 3 ,  1
3 4

−
= −

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

B   7 8 1
1 2 5 3

−
=

− −
⎡ ⎤
⎢ ⎥⎣ ⎦

C . 

System 2: 
  

 
5.2 6.7 7.1
9.3 11.9 15.9 ,  2

21.9 8.6 27.3

−
= − −

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A
5.6 6.2 9.3
8.2 15.1 13.7 ,  2

25.3 9.9 24.6

−
= − −

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A  

 
0.7 0.2 1.1

0.9 5.0 4.0 ,  2
2.3 0.9 4.2

− −
= − −

− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

D  
0.3 0.8 0.7

1.3 3.0 1.0 ,  2
1.1 0.2 3.4

− −
= − −

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

D  

 
2 7
4 1 ,  2
2 3

−
= −

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

B   . 5 9 1
2 3 7 2

−
=

− −
⎡ ⎤
⎢ ⎥⎣ ⎦

C

The delay times 1 1h =  and , and the decay 
rate 

2 1h =
=α 0.26. The problem is to find F such that 

2 ( )i i i iμ γ+ <A B FC  for , where  1,  2i =
1 1

2 2
( ),   ( )ii i ii i= + = +A A A D D D 1,  2i =, , 

 ,   ,i i i i i i= − = −A N D D 1,  2i =
eαγ α= − − − +M D 1,  2i =

M A , 
 , . || || (|| || || ||)ih

i i i iN
For =α 0.26, we can obtain 1 10.6508γ = −  and 

2 12.2831γ = − . Then we can easily compute a 
solution F from the following LMIs using Matlab’s 
LMI Control Toolbox. 

1 1 1 1 1 1 12T Tγ T T+ − + + <(A A I) B FC C F B 0  

2 2 2 2 2 2 22T Tγ T T+ − + + <(A A I) B FC C F B 0  
A solution is obtained as follows:  

16.9437 3.7400
11.3197 6.1597
− −⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
F . 

It is easy to check that 2 1 1 1( ) 11.4358μ + = −A B FC , 
which is less that 1 10.6508γ = − . Similarly, 

2 2 2 2( ) 15.1686μ + = −A B FC < 2 12.2831γ = − . It 
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then can be inferred from Theorem 3.1 that the 
collection of systems  

ˆ ˆ( ) ( ) ( ) ( )i i i i i i ix t x t x t= + + −A B FC D� 1,2, ,= …h ,  i p ,  
are all robustly stable. 
 
 
5.  Conclusions 
The problem of simultaneously stabilizing controller 
design via static output feedback for a collection of 
interval time-delay systems was solved by finding an 
admissible solution to the matrix measure assignment 
problem. We presented an LMI approach to solve the 
matrix measure assignment problem. It was shown 
that the admissible solution set of the matrix measure 
assignment problem is convex. It is also shown that 
the matrix measure assignment problem is equivalent 
to an LMI feasibility problem. A necessary and 
sufficient condition for the existence of output 
feedback controllers to the matrix measure assignment 
problem is obtained. Finally, an illustrative example is 
given to show the correctness of the proposed 
approach. 
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