
On Extending WS-Policy with Specification of XML Web Service Semantics

VLADIMIR TOSIC, ABDELKARIM ERRADI, PIYUSH MAHESHWARI
School of Computer Science and Engineering

The University of New South Wales
Sydney, NSW 2052

AUSTRALIA
 http://masc.web.cse.unsw.edu.au/

Abstract: - Several languages for specification of various aspects of semantics, such as quality of service (QoS), of
XML Web services have appeared recently. However, none of them is widely accepted by industry. On the other hand,
WS-Policy (a general framework for the specification of policies for Web services) has strong industry support, but
currently lacks detailed specification of ontological meaning, QoS, and other important aspects of semantics. We
propose extending WS-Policy with comprehensive specification of semantics of Web services. First, we discuss
specification of semantics with policies. Then, we state principles for describing semantics of Web services. Finally,
we discuss strengths and weaknesses of WS-Policy and our proposal for extensions in the new WS-Policy4MASC
language. These extensions enable that a Web service composition can be comprehensively described with WSDL,
WSBPEL, and WS-Policy4MASC, without the need for OWL-S, WSLA, WSOL, or WS-Agreement.

Key-Words: - Web services, semantics, policy, WS-Policy, Web service management, quality of service, adaptability.

1 Introduction
An XML (Extensible Markup Language) Web service is
a software application identified by a URI (Uniform
Resource Identifier), described in XML-based lan-
guages, and supporting direct interactions with other
software using XML-based messages over Internet-
based protocols. The three main Web Service technolo-
gies are the SOAP protocol for XML messaging, the
Web Service Description Language (WSDL) for service
interface description, and the Universal Description,
Discovery, and Integration (UDDI) registry for service
publication and discovery. The Web Services Business
Process Execution Language (WSBPEL) for describing
Web service compositions is also increasingly popular.
 While there has been a lot of recent progress
regarding Web Services, a number of issues have not yet
been studied completely. One of these issues is the
specification of semantics of Web services. Hereafter,
by ‘semantics’ we mean formal and precise description
of the meaning of terms related to Web services. For
example, these terms can be Web service names,
endpoints, interfaces, operations, messages, input output
parts, quality of service metrics, or used measurement
units. As advocated by the Semantic Web community,
semantics of Web services is needed to successfully
perform automatic Web service discovery, selection,
composition, invocation, and interoperation [1].
 We will use the following example to illustrate
semantics of Web services, policies, and our sugges-
tions. Assume that there is a current weather report Web
service with one operation: Integer weatherTempera-
ture(String postalCode). In other words, the Web service

operation ‘weatherTemperature’ receives one input
parameter of the String data type and returns one output
parameter of the Integer data type. A semantic descrip-
tion of this operation would somehow associate the
name of this operation with the notion of current
weather reports, the input parameter with the notion of
postal codes, and the output parameter with the notion of
weather temperature. More precise semantic descriptions
are also possible. For example, it is possible to specify
that the operation reports weather in Canada and uses
Celsius degrees, so that the input parameter must be a
valid Canadian postal code, while the output parameter
represents the temperature in Celsius degrees and that
the temperature was measured not more that 1 hour ago
(so it is relatively current).
 This paper proposes specification of semantics of
Web services using policies and, in particularly,
developing extensions to the general, industry-developed
Web Services Policy Framework (WS-Policy) [2]. We
have been integrating this proposal into our new XML
language WS-Policy4MASC, which is an extension of
WS-Policy. While we suggest a significantly different
approach from the approaches previously advocated in
the Semantic Web literature, it much better addresses
Web service management requirements.
 This section provided a general introduction to the
semantics of Web services. The following section
defines the term ‘policy’ and illustrates how policies can
be used to represent semantics of Web services. Section
3 outlines the principles that we propose for specifica-
tion of semantics of Web services. They are based on
past publications and our extensive experience in

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 407

developing middleware for Web services, particularly
for Web service management. Section 4 discusses
strengths and weaknesses of WS-Policy and outlines the
proposed WS-Policy extensions. Section 5 presents how
we have implemented most of these proposed extensions
in our new WS-Policy4MASC language. The final
section summarizes conclusions and future work items.

2 Using Policies to Represent Semantics
In the area of management of networks and distributed
systems, policy-driven management [3] has caught
considerable attention during the last several years.
There is an ongoing discussion on the precise definition
of the term policy, but we will hereafter use the term
‘policy’ to denote high-level, implementation-
independent, operation and management goals and/or
rules expressed in a human-readable form. Policies can
be seen as decision-making guidelines specifying the
rules governing choices in the behavior of a system. A
policy-driven management system refines these high-
level goals and rules into many low-level, implementa-
tion-specific, actions controlling operation and
management of particular system elements. For
example, a policy could be used to: (1) ensure compli-
ance, (2) configure behavior, or (3) achieve adaptability.
Several classifications of policies exist. We find the
classification from [4] particularly useful. It differenti-
ates action policies (describing actions to be taken in a
particular state), goal policies (describing desired states
of the system), and utility function policies (defining
value of each possible state).
 Policies can be used to represent semantics (i.e.,
meaning) if they are interpreted as rules about meaning.
We will illustrate this on the example introduced in the
previous section. Several approaches are possible. One
way is to use two action policies. The first specifies that
whenever the input parameter is not a valid Canadian
postal code, then an error message (caused by client
misbehavior) will be reported. The second specifies that
whenever the output parameter is not a valid current
Canadian weather temperature in Celsius degrees, then
an error message (caused by service misbehavior) will
be reported. Another way to describe the same semantics
is to use two corresponding goal policies – one
describing the desired state of the operation’s input
parameter, the other describing the desired state of the
operation’s output parameter.
 In both approaches, the two policies describe
operation’s pre-conditions and post-conditions. To be
able to use these policies for run-time monitoring and
management activities, these policies (or additional
related policies) should also describe how these
conditions (requirements/guarantees) are checked during

run-time. For example, the pre-condition policy can
specify that for checking the input parameter, it invokes
the postal code verification Web service by Canada Post
for every submitted input parameter. The post-condition
policy can specify that the verification of the output
parameter involves limiting its values (e.g., between –
70C and +50C) and using Environment Canada Web
services to periodically and randomly (e.g., on average
once in 1000 invocations) check that the values provided
by the current weather report Web service are really
current weather temperatures in Canada and not some
made-up numbers within the above-mentioned limits or
historical numbers from the past.
 Note that simply annotating that the ‘weather’
operation is associated with an ontological definition of
the ‘current Canadian weather report for the given postal
code’, its input parameter is associated with an
ontological definition of the ‘Canadian postal code’, and
its output parameter is associated with an ontological
definition of the ‘current temperature’ can also be done
with goal policies. These policies can also require that
value provided for the input parameter is annotated with
an association to the same ontological definition of the
‘Canadian postal code’, and the value provided for the
output parameter is associated with the same ontological
definition of the ‘current temperature’. However, in our
opinion such declarative descriptions (although
championed by some members of the Semantic Web
community) are not as useful in practice as the
previously mentioned management-oriented policies.
They can be used for formal reasoning about Web
services (e.g., in Web service selection), but they miss
information crucial for run-time checks of provided
values. For example, they do not specify when and by
which party the necessary checks are performed.

3 Principles for Specification of Web
Service Semantics
The authors in [5] studied comprehensive contractual
description of Web services and suggested several
principles for the work on a unifying framework
addressing various functional, quality, and infrastructure
contracts for Web services. We identify here several
principles for specification of semantics of Web
services, based on [5], other past publications, and our
extensive experience [6, 7, 8] in developing middleware
for Web services and Web service management:
 1. Specification of semantics should be optional for
Web services. Although semantics is useful, not
everybody will want to use it, e.g., due to the overhead
of corresponding specification, reasoning, and manage-
ment activities. Consequently, semantic descriptions
should be a layer above WSDL.

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 408

 2. There should be a unified (hopefully: standardized)
format for representing expressions. Expressions can be
used to describe various relationships between terms.
Their unification enables easier reasoning, significantly
reduces the run-time overhead, and makes selection and
management of Web services easier.
 3. The number of languages for describing Web
services should be kept small. This is because there is
less run-time overhead in supporting one language than
a group of languages, even if they are compatible.
Further, this reduces redundancies and potential
incompatibilities. The currently dominant approach
within the Semantic Web community is to use OWL-S
(OWL-Services) [1], which is based on OWL (Web
Ontology Language), which is, in turn, based on RDF
(Resource Definition Framework). In spite of past
efforts, there are some redundancies and potential
incompatibilities between WSDL and OWL-S. OWL-S
is now advocated as a “complement, not competitor” to
WSDL and a similar future relationship with WSBPEL
might be developed. There are also several additional
and complementary Web service languages outside the
Semantic Web community, such as WS-Policy [4]. This
means that a Web service provider has to support a large
number of languages, which all have different tools and
introduce significant run-time overhead.
 4. Reuse and extension of the widely accepted Web
Service languages. There are already many languages
for Web Services. In our opinion, development of new
languages or popularization of less-known languages
will probably not be as effective as reuse and extension
of languages in which companies made investments.
WSDL is the only Web Service language that is widely
accepted, so it has to be used. Further, it seems that the
acceptance of WSBPEL is gaining momentum. Further,
a number of languages have recently appeared for
specification of requirements and capabilities for Web
services, including WS-Policy, WSLA (Web Service
Level Agreement) [10], Web Service Offerings
Language (WSOL) [6], Web Services Agreement
Specification (WS-Agreement) [11], and OWL-S [1].
However, it seems that the industrial support is strongest
for WS-Policy.
 5. The specification of semantics must support
monitoring of functional and QoS characteristics of Web
service executions. This requires that the language must
enable specification of which QoS metrics (e.g.,
response time) are monitored or calculated,
when/where/how this is done, and how the moni-
tored/calculated values are exchanged between
management parties. Further, this requires specification
of functional and QoS conditions (requirements and
guarantees) that are evaluated, when/where/how this
evaluation is done, what party is responsible for

satisfaction of these conditions, and how the results are
exchanged between management parties.
 6. The specification of semantics must support
control (particularly: adaptation) of execution of Web
services and Web service compositions.
 7. The specification of semantics must support Web
service management and ontological reasoning.
 There are numerous additional detailed requirements
for a corresponding specification language. They can be
found in [9].

4 WS-Policy – The Current Status and
the Proposed Extensions
The Web Services Policy Framework (WS-Policy) [4],
an industrial specification standardized by the World
Wide Web Consortium (W3C). It defines an extensible
container to hold domain-specific policy assertions. It
also provides a general framework for attaching
attributes/metadata to services and for placing range of
interaction constraints with respect to various QoS
aspects, such as security (e.g., encryption type,
authentication mode) or reliable messaging. It is
intended as a complement to WSDL and WSBPEL. In
the context of Web services, policies can be defined and
communicated either statically or dynamically. Static
policies can be attached to the service contract (e.g.,
WSDL) while dynamic policies are created and
communicated to service consumers during interactions
with the service.
 In the WS-Policy model, a policy is defined as a
collection of policy alternatives, each of which is a
collection of policy assertions. A policy assertion binds
a variable to one or more possible values using a policy
vocabulary defined by domain-specific languages, such
as WS-SecurityPolicy. WS-PolicyAttachment defines a
generic mechanism to associate a policy with subjects to
which the policy applies, such as WSDL elements or
Web service registry information. Various policy
subjects are possible, such as service, endpoint,
operation, message, or message part. A policy scope is a
set of policy subjects to which a policy may apply.
 WS-Policy has a number of good features. For
example, it is flexible and extensible – policies can be
specified both inside and outside WSDL files. Further, it
has some reusability mechanisms, such as inclusion and
grouping of policies. Nevertheless, it must be noted that
WS-Policy is only a general framework, while the
details of the specification of particular categories of
policies will be defined in specialized languages. The
only such specialized language currently developed are
WS-SecurityPolicy and WS-ReliableMessaging. WS-
PolicyAssertions can be used for the formal specifica-
tion of functional constraints, but the contained

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 409

expressions can be specified in any language. It is not
clear whether and when some specialized languages for
the specification of quality of service (QoS) policies,
prices/penalties, and other management information will
be developed. This is a serious limitation. Some
unification and standardization of common elements,
such as expressions, of various WS-Policy languages
would reduce the overhead of supporting this frame-
work. WS-Policy also does not have concepts of a
contract, such as a service level agreement (SLA) or
class of service. Consequently, we advocate extending
WS-Policy with specification of these concepts. Further,
WS-Policy does not detail where, when, and how are
policies monitored and evaluated. Since many policies
have to be monitored and controlled during run-time,
WS-Policy needs better support for management
applications, including explicit specification of such
management information.
 We propose that ontological meaning for monitored
data items (e.g., message parts and QoS metrics) is
specified in the extended WS-Policy with a simple
construct OntologicalMeaning that has 2 attributes:
(1) OntologicalDefinition – a qualified XML name
containing namespace of the used ontology and name of
the ontological concept within this ontology; and
(2) OntologyLanguage – the URI of the language in
which the referenced ontology is defined.
The actual definitions of ontological concepts would be
in external, reusable and extensible, ontologies. In the
current practice, ontologies are defined in several
languages, such OWL, RDF, RDF Schema, and XML
Schema. By allowing the use ontologies in different
languages, the interoperability suffers and the require-
ment of using minimal number of Web service
languages is not satisfied. While some simple ontology
format (e.g., as defined for WSOL) can be used by
default, a simple format is not enough for supporting
ontological reasoning. On the other hand, this approach
has a good characteristic that if a Web service does not
understand the ontology, it at least knows the name of
the ontological concept and can perform simple syntax
matching of ontological meanings.
 For the specification of functional pre- and post-
conditions, prices/penalties, QoS constraints, and
management statements, we suggest that WSOL
concepts of a constraint and a statement are re-defined
as policy assertions in a specialized WS-Policy
extension language. WSOL has a standardized
expression schema (defined separately from the rest of
the language, to achieve reusability) and it could be
reused in the extended WS-Policy. The new concept of a
contract could be defined in the extended WS-Policy as
a collection of policies, policy attachments, and
additional information (e.g., contract parties, validity,
etc.). The WSOL concept of a service offering could be

used as a role model for this definition. Additional WS-
Policy extensions with policies related to Web service
compositions, such as recovery policies, can be taken
from [7].

5 Implementation of the Proposed
Extensions in WS-Policy4MASC
We have been implementing the above suggestions in
our WS-Policy4MASC extension of WS-Policy. Its goal
is to enable specification of policies for monitoring of
functional and QoS aspects (such as performance and
reliability) and different types of adaptation for Web
services and their compositions, in a way that can be
used for automatic configuration of our MASC
(Manageable and Adaptable Service Compositions)
middleware presented in [8]. To be able to perform
policy-driven management of Web services and their
compositions in the MASC middleware, we needed a
machine processeable and precise format for declarative
specification of various types of policies. We have
chosen WS-Policy as the basis for our policy specifica-
tion in WS-Policy4MASC, but added original detailed
constructs useful for QoS monitoring and dynamic
adaptation. Note that WS-Policy4MASC is also
compatible with other Web services standards such as
WSDL and WSBPEL, as well as Microsoft .NET 3.0
technologies, such as the Extensible Application Markup
Language (XAML).
 WS-Policy4MASC will be described in detail and
illustrated in a forthcoming paper, but this paper
summarizes its main characteristics. Our language
extends WS-Policy by defining XML schemas with new
types of policy assertions. Goal policy assertions specify
requirements and guarantees to be met in desired normal
operation (e.g., response time of a particular activity has
to be less than 1 second). They guide monitoring
activities in MASC. Action policy assertions specify
actions to be taken if certain conditions are met (e.g.,
some guarantees were not satisfied). For example, these
actions can be removal, addition, replacement, skipping,
or retrying of a sub-process (or individual activity) or
process termination. They guide adaptation and other
control actions in MASC. Utility policy assertions
specify monetary values assigned to particular situations
(e.g., execution of some action). They can be used by
MASC for billing and for selection between alternative
action policy assertions. Meta-policy assertions can be
used to specify which action policy assertions are
alternative and which conflict resolution strategy (e.g.,
minimization of costs) should be used. In addition to
these 4 new types of policy assertions, WS-
Policy4MASC enables specification of additional
information that is necessary for run-time policy-driven

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 410

management (monitoring, control). For example, this
includes information about conditions when policy
assertions are evaluated/executed, parties performing
this evaluation/execution, a party responsible for
meeting a goal policy assertion, monitored data items,
states, state transitions, schedules, events, and various
expressions (e.g., Boolean and arithmetic with units).
 The described construct OntologicalMeaning is also
defined in the XML schema for WS-Policy4MASC, but
it is currently not yet used by the MASC middleware.
The default ontology language is the simple ontology
schema that was first defined for WSOL.
 WS-Policy4MASC satisfies, at least to some extent,
all principles for specification of Web service semantics
that we have listed in Section 3. First, WS-
Policy4MASC is an optional language, in a layer
additional to and compatible with WSDL and WSBPEL.
Second, it defines its own unified format for specifica-
tion of expressions, which is an improvement of the
expression format defined for WSOL. Third, it is
possible to comprehensively describe Web services and
Web service compositions using only WSDL, WSBPEL,
and WS-Policy4MASC, while the need for the other
languages is eliminated (except for definition of optional
ontological meaning). Fourth, it extends WS-Policy,
which is already used in practice for purposes compati-
ble to the purpose of WS-Policy4MASC. Fifth, it
provides detailed specification of Web service monitor-
ing activities, primarily through goal policy assertions.
Sixth, it enables detailed specification of Web service
control activities, particularly adaptation of Web service
compositions. Action policy assertions and, to some
extent, utility policy assertions and meta-policy
assertions are the key constructs in this regard. Seventh,
the WS-Policy4MASC construct for ontological
meaning provides some support for ontological
reasoning, but improvements are possible in this area.
 A partial example of WS-Policy4MASC constructs is
shown in Figure 1. It is from our series of scenarios
related to a stock trading case study [8]. The <When>
element specifies that when a process (e.g., a Web
service composition) is in the Executing state and the
PortfolioValueReceived event occurs the Boolean
expression called IntlPortfolio is evaluated to check
whether the portfolio contains only amounts in local
currency or currency conversion is needed. The <
ActionPolicyAssertion> element specifies that if all
conditions in the above <When> element are specified,
then the process (e.g., Web service composition)
orchestrator is the management party responsible for
executing a set of process addition actions (these actions
are not shown in Figure 1 for brevity).
 Within the MASC middleware, WS-Policy4MASC
policy assertions are stored in a policy repository, which
is a collection of instances of policy classes. The policy

classes are generated automatically from the WS-
Policy4MASC XML schema, using an XML-schema-to-
classes generator (in our .NET 3.0 and C#-based
prototype of MASC, we used the XSD tool from .NET
3.0). When MASC starts, our MASCPolicyParser within
it imports WS-Policy4MASC files, creates instances of
corresponding policy classes, and stores these instances
in the policy repository. Using this policy information,
monitoring modules in MASC configure themselves to
monitor relevant events. When such an event happens, it
triggers evaluation of goal policies, execution of action
policies, calculation of utilities, and/or other effects
(e.g., a state transition). Detailed discussion of the
architecture of the MASC middleware, our prototype
implementation, and its evaluation on case studies was
published in [8].

<masc-se:When MASCID=”CurrencyConversionNeeded”>
 <masc-se:AllowedStates>
 <masc-se:StateRef To=”tns:Executing”/>
 </masc-se:AllowedStates>
 <masc-se:PossibleTriggerEvents>
 <masc-se:EventRef To=”tns:PortfolioValueReceived”/>
 </masc-se:PossibleTriggerEvents>
 <masc-ex:BooleanExpressionRef To=”tns:IntlPortfolio”/>
</masc-se:When>
…
<masc-ap:ActionPolicyAssertion MASCID=”AddCurrencyConversion”
 ManagementParty=”masc-cn:MASC_WSORCHESTRATOR”>
 <masc-se:WhenRef To=”tns:CurrencyConversionNeeded”/>
 <masc-ap:Actions>
 <!— The content of the following element is omitted for brevity -->
 <masc-ap:ProcessAddition> … </masc-ap:ProcessAddition>
 </masc-ap:Actions>
</masc-ap:ActionPolicyAssertion>

Figure 1. An Example of WS-Policy4MASC Constructs

6 Conclusions and Future Work
The existing solutions for specification of various
aspects of Web service semantics are partial and often
mutually incompatible, so a unifying framework is
highly needed. We advocate that an extended and
semantically-enriched WS-Policy can play a key
unifying role in annotating WSDL and WSBPEL web
service descriptions with various rules and support Web
service management (monitoring and control), as well as
service customization/versioning. The suggested WS-
Policy extensions for the specification of goal policy
assertions, action policy assertions, and utility policy
assertions cover the same need as WSLA [10] and WS-
Agreement [11], while these extensions plus the
suggested specification of ontological meaning address
the same need as OWL-S [1]. Therefore, our work
enables that an XML Web service composition can be
comprehensively described using only WSDL,
WSBPEL, and our new WS-Policy4MASC. A particular
novelty of WS-Policy4MASC are utility policy

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 411

assertions and meta-policy assertions. They are used for
specification of monetary and intangible business values
and algorithms that are used for selection between
alternative actions, respectively.
 We have completed definition of the main XML
schemas for WS-Policy4MASC. The focus of our past
work was on supporting monitoring and dynamic
adaptation (which is the main goal of the MASC
project). While we made some progress towards
specification of ontological meaning, we plan additions
that will improve expressive power. Since these are
relatively small additions, the main item for our ongoing
work is further development of the proof-of-concept
prototype implementation of the MASC middleware that
uses WS-Policy4MASC policy assertions. While we
already have a working prototype (discussed in [8]), we
use an iterative development process to add new features
into it (and, sometimes, the MASC architecture) and
evaluate them on case studies. For example, the current
MASC architecture and its prototype have no support for
ontological reasoning, so some support might be added
in the future. In some cases, changes to the MASC
architecture require changes to the WS-Policy4MASC
schemas (i.e., the language grammar), so our language
will continue to evolve.
 The complicated task of automating Web service
policy interoperability (e.g., consistency checking)
requires further research. Some of the challenges are that
policies evolve over time and vary with service’s
deployment context (which may change dynamically)
and runtime environment (which is constantly chang-
ing). Two main problems need to be addressed: (1) How
can we ensure that composed services have compatible
and consistent policies? (2) How can we dynamically
detect and resolve/mediate conflicts between policies of
composed services? Using WS-Policy extensions
discussed in this paper, one stream of our future work
will investigate novel algorithms and a policy middle-
ware to address these open issues.

Acknowledgements:
The work on the MASC middleware and the WS-
Policy4MASC language is a part of the research project
“Building Policy-Driven Middleware for QoS-Aware
and Adaptive Web Services Composition” led by Dr.
Piyush Maheshwari and sponsored by the Australian
Research Council (ARC) and Microsoft Australia.
Please note that some of the proposals in this paper, such
as the OntologicalMeaning construct, go beyond the
scope of the mentioned research project.
 The project is conducted at the University of New
South Wales (UNSW). In addition to this university,
Vladimir Tosic is affiliated with the Department of
Computer Science, the University of Western Ontario,

London, Canada, while Piyush Maheshwari is affiliated
with IBM India Research Lab, New Delhi, India.
 The authors thank A/Prof. Boualem Benatallah from
the UNSW for his help in administration of this research
project, insightful discussions, and comments.

References:
[1] D. Martin (ed.), OWL-S: Semantic Markup for Web

Services, version: 1.1 (Nov. 2004), WWW page at:
www.daml.org/services/owl-s/1.1/overview/, 2004

[2] J. Schlimmer (ed.), Web Services Policy Framework
(WS-Policy), version: Sept. 2004, WWW page at:
www6.software.ibm.com/software/developer/library/
ws-policy.pdf, 2004

[3] M. Sloman, Policy Driven Management for
Distributed Systems, Journal of Network and Sys-
tems Management, Plenum, Vol. 2, No. 4, Dec.
1999, pp. 333-360.

[4] J. O. Kephart, and W. E. Walsh, An artificial
intelligence perspective on autonomic computing
policies, in Proc. of Policy 2004 (June 2004, York-
town Heights, USA), IEEE, 2004, pp. 3-12.

[5] V. Tosic, and B. Pagurek, On Comprehensive
Contractual Descriptions of Web Services, in Proc.
of EEE-05 (March 2005, Hong Kong, China), IEEE,
2005, pp. 444-449.

[6] V. Tosic, B. Pagurek, K. Patel, B. Esfandiari, and W.
Ma, Management Applications of the Web Service
Offerings Language (WSOL), Information Systems,
Elsevier, Vol. 30, No. 7, Nov. 2005, pp. 564-586.

[7] A. Erradi and P. Maheshwari, AdptiveBPEL: Policy-
Driven Middleware for Flexible Web Services Com-
position, in Proc. of the MWS 2005 workshop at
EDOC 2005 (September 2005, Enschede, The Neth-
erlands), IEEE, 2005, pp. 5-12.

[8] A. Erradi , P. Maheshwari, and V. Tosic, Policy-
Driven Middleware for Self-Adaptation of Web
Services Compositions, in Proc. of Middleware 2006
(Melbourne, Australia, Nov. 27 - Dec. 1, 2006),
Lecture Notes in Computer Science (LNCS), Vol.
4290, Springer, 2006, pp. 62-80.

[9] A. Erradi (ed.), Manageable and Adaptable Service
Compositions (MASC), WWW page at:
masc.web.cse.unsw.edu.au, 2006

[10] A. Keller, and H. Ludwig, The WSLA Framework:
Specifying and Monitoring Service Level Agree-
ments for Web Services, Journal of Network and
Systems Management, Plenum, Vol. 11, No 1, March
2003, pp. 57-81.

[11] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey,
H. Ludwig, T. Nakata, J. Pruyne, J. Rofrano, S.
Tuecke, and M. Xu, Web Services Agreement Speci-
fication (WS-Agreement), version 2006/09, Global
Grid Forum (GGF), 2006.

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 412

http://www.daml.org/services/owl-s/1.1/overview/
ftp://www6.%20software.ibm.com/software/developer/library/ws-policy.pdf
ftp://www6.%20software.ibm.com/software/developer/library/ws-policy.pdf

