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We present a suitable algorithm, based on special Lie series, for the representation of the solution
of an initial value problem, which has a delay term and refers itself to the behavior, for example, of
a biological system controlled by a feedback signal. Classical representation of protein synthesis can
furnish a case-study for this approach. We foresee non linear oscillations in concentrations of the
involved substances in similar models . We also present, as a further example in which oscillations
are foreseen, a simple model of the ovarian cycle in mammalian. This procedure, based on Lie series,
is general in principle and could be useful in many different fields of applied research.
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I. INTRODUCTION

Sometimes, the investigation of biomedical problems
needs peculiar mathematical approaches, with suitable
algorithms, in order to give an answer to systems with
complex patterns. In particular, those ones in which the
control is provided by feedback signals to the system
and/or nonlinear behavior is involved. Such problems
are often initial-value problems assigned to a nonlinear
differential system whose integration can be performed
by numerical methods or, e.g. by the classical method
of Lie series [1-3]. When a delay is present, one needs
a further improvement of the general analytical method,
because nonlinearity requires Lie series of a more gen-
eral type in the representation of the components of the
solution [4-13].

So, let us consider the classical mathematical ap-
proach, in protein synthesis control formulated in Good-
win’s works, e.g. in [14] where a single negative feedback
signal is involved. In these last years, starting from
the Goodwin’s, a lot of biological models have been pro-
posed and discussed, involving more signals, of positive
and negative type, acting in coupled circuits. We refer
to this important historical work, because it is very well
known by scientists and applied mathematicians, and fits
well the problem furnishing the most simple example of
a general tool for solving delay problems: the aim of this
paper. Furthermore it is a simple model.

But many other examples are possible which lead to
similar representative differential equations describing
the behavior of a system, even more simple than the
above biological system. In fact, more in general, we
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may think of a biological phenomenon as resulting by a
chain of events in which a lower locus answers, by means
of a feedback signal, to a chemical stimulus (a hormone).
This arrives in situ with a time delay travelling from a
higher locus, or alternatively we can even think that the
hormone’s target is a developing cellular structure which
becomes capable to decode the stimulus after a fixed time
T , becoming able to answer to the feedback signal only
with a time delay.

Then, if an initial-value problem, assigned to a differ-
ential system like that we are going to recall, describing
e.g. the behavior of three substances (e.g. messenger, en-
zyme, metabolite), it will get a unique periodic solution
provided that the equations for any meaning of symbols
preserve structure we describe in what follows.

That is all the equations are (partially) linear, the first
one w.r.t. Y , the substance produced by the locus re-
ceiving the feedback signal; the second one w.r.t. Z,
the equation of balance of the intermediate substance,
which in the Goodwin’s model contains the delay term,
and the last one w.r.t. M , the substance responsible of
the feedback signal.

This situation, in a more complex context, emerges
also in the equations describing mammalian female cycle.
So we are going to briefly discuss the model pertaining
to it and describe the foreseen oscillatory behavior.

The validity of the method we are going to assess is not
related to the periodicity properties of the solution, which
could be absent in different type of equations but, rather,
concerns the strategy to be adopted in the search of an
explicit solution to a problem with delay. This approach,
therefore, provide a suitable algorithm capable to solve
similar initial-value problems with delay, representing the
feedback signal controlled behavior of phenomena (not
only of biological nature) that we can meet in several
fields of Science and Engineering.

Our starting point is:
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dY

dt
=

γ

α + βM
− kY (1)

dZ

dt
= λYt−T − µZ

dM

dt
= ρZ − σM

where e.g.:
the Greek letters are constants,
Y is the nuclear concentration of messenger,
Z is the enzyme cytoplasmic concentration,
M is e.g. the metabolite concentration, which as the

final product produces the feedback signal on the genetic
locus, expressed by the first term in the first equation,

Yt−T is the delay term due e.g. to time of molecules
transfer from the nucleus to the ribosome locus.

In each equation the negative terms express the loss
rate of molecules assumed to be proportional to their
concentrations.

Then:

Yt−T = Y (t− T )

means e.g. that the synthesis rate of the enzyme is de-
pending on messenger concentration in the nucleus, T
units of time in the past. Computer simulation of (1)
shows a periodic solution [14].

How this paper is organized?
In the next paragraph we answer the question: un-

der which conditions does the delay presence ensure the
possibility of oscillations?

Then, as principal aim, we utilize the improved algo-
rithm of Lie series in order to solve the problem, writing
explicitly the solution, observing that a finite differential
system with delay is equivalent to a system without de-
lay but comprehending an infinite sequence of differential
equations. That observation is peculiar to the method.

Finally we discuss a more complex control circuit in
which two feedback signals with opposite actions are in-
volved, describing the ovarian cycle, in order to stress
that nonlinear oscillations could be foreseen when the
representative equations are partially linear as above
mentioned.

Elsewhere we provide more detailed proofs concerning
the algorithm of integration [4-13]. Here we want just
to emphasize the algorithm and its intrinsic interest for
expert people in delay equations.

II. PERIODIC SOLUTION

Theorem 1 The solution to problem (1) is periodic with
period T.

Proof. In fact, how it is well known, since the second
equation is linear, if a periodic solution

Z = Z(t− T )

exists, it implies analogue solutions in other equations
which are linear in M and Y respectively:

M = M(t− T ),
Y = Y (t− T ).

In order to recover this statement, let us consider the
following linear problem in which y is a delayed function,
which we suppose as assigned:

dz

dt
= −µz + λy(t− τ), t ≥ 0,

dz

dt
= −µz, t ≤ 0, τ = delay,

z(0) = z(τ); (2)
y(t− τ) = y(t) if t ∈ [0, τ ].

We are coming to prove that the condition (2), i.e. to
have the same value at the end points 0, τ , ensures the
periodicity of the solution with period τ .

Easily we can write the solution as:

z(t) = e−µtz(0) + λe−µt

∫ t

0

eµsy(s− τ)ds.

Therefore, if t ∈ [0, τ ]:

z(t + τ) = e−µte−µτz(0)+

e−(t+τ)µ

∫ t+τ

0

eµsy(s− τ)ds =⇒ z(t + τ) =

e−µt

(
e−µτz(0)+

e−τµ
∫ τ

0
eµsy(s− τ)ds

)
+

+e−(t+τ)µ

∫ t+τ

τ

eµsy(s− τ)ds =⇒

z(t + τ) = e−µtz(τ)+

e−tµ

∫ t+τ

τ

eµ(s−τ)y(s− τ)ds =⇒

if v = s− τ,

z(t + τ) = e−µtz(0) + e−tµ

∫ t

0

eµvy(v)dv,

then :

z(t + τ) = e−µtz(0) + e−tµ

∫ t

0

eµvy(v − τ)dz

= z(t).

Q.E.D.
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III. LIE SERIES AS A SUITABLE ALGORITHM

Theorem 2 Problem (1) is equivalent to an initial-value
problem assigned to a non finite sequence of differential
equations.

Proof. Let us introduce the translation operator:

Yt−T = Y (t− T ) = e−TDtY (t)

Dt =
d

dt

e−TDt =
+∞∑
n=0

(−1)n Tn

n!
Dt

and rewrite the system (1) in the following symbolic form:

dY

dt
= Θ1(M, Y )

dZ

dt
= ΘZ(e−TDtY, Z)

dM

dt
= ΘM (Z,M)

Y (t0) = Y0; Z(t0) = Z0;M0(t0) = M0

where the last row represents initial values.
If we introduce the sequence of derivatives:

dn

dtn
Y = Yn+1; n ∈ {0, 1, 2, ...}

we can write, if Y1 ≡ Y, the above initial-value problem
as:

dY1

dt
= Θ1(M, Y1) = Y2

dY2

dt
=

d2Y1

dt2
= Θ2 = Y3

... (3)
dYk

dt
= Θk = Yk+1

...
dZ

dt
= ΘZ (Y1, Y2, ..., Yk, ...Z)

dM

dt
= ΘM (Z, M)

Y1 (t0) = Y0; ...; Yk (t0) =
[

dk−1

dtk−1
Θ1

]

t=t0

; ...

Z(t0) = Z0; M(t0) = M0

Where it is not difficult to prove that every derivative[
dk−1

dtk−1 Θ1

]
t=t0

depends on initial values:

Y (t0) = Y0; Z (t0) = Z0;M (t0) = M0. (4)

E.G.:

Y2(t0) = [Θ1]t=t0

Y3(t0) =
[
∂Θ1

∂M

dM

dt
+

∂Θ1

∂Y

dY

dt

]

t=t0
...

Q.E.D.
To solve the above initial value problem (3), which con-

cerns a non finite number of differential first order equa-
tions, we extended [4-13] the Gröbner’s method, which
utilizes Lie series and concerns similar but finite prob-
lems.

Let us consider the following differential operator (gen-
eralized Lie operator):

D = ΘZ
∂

∂z
+ ΘM

∂

∂m
+ Θ1

∂

∂y1
+ ... + Θk

∂

∂yk
+ ...

where all Θ are the same functions with the same name in
the above system (3), but now depending on parametric
variables like those of sequence:

y1 , ..., yk, ..., z, m,

which replace the analogue ones indicated with capital
letters.

Then let us introduce the exponential Lie operator:

e(t−t0)D =
+∞∑
v=0

(t− t0)
v

v!
Dv

which is a generalization of the Gröbner’s [1-3], and has
the same very important properties:

i) linearity;
ii) conservation of products;
iii) ”exchange” property for an analytical function.

Namely the image by e(t−t0)D of an analytical function is
the value which the function assumes on the transformed
variables.

Elsewhere, e.g. [4-13], we proved that a unique solu-
tion exists if the right-hand members of (3) are analyt-
ical functions in their arguments. Then, we can write
the solution to the assigned initial-value problem in the
following way:

Y =
(
e(t−t0)Dy1

)
y1=Y0;...yk=

h
dk−1

dtk−1 Θ1

i
t−t0

;...z=Z0;m=M0

,

Z =
(
e(t−t0)Dz

)
y1=Y0;...yk=

h
dk−1

dtk−1 Θ1

i
t−t0

;...z=Z0;m=M0

,

M =
(
e(t−t0)Dm

)
y1=Y0;...yk=

h
dk−1

dtk−1 Θ1

i
t−t0

;...z=Z0;m=M0

,

In fact it is not difficult to verify, by means of property
iii) of the exponential Lie operator, that the above special
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functions are the components of the effective solution of
(3) of (1).

This method is equivalent to solve firstly the problem
with parametric initial conditions and then to particular-
ize them with initial conditions of the assigned problem.
But it needs to be remarked that we can operate the sub-
stitutions of parameters with the initial values only at the
end, after the action of the exponential Lie operator.

IV. THE OVARIAN CYCLE: A SHORT
REMARK

As already anticipated, finally we consider a more com-
plex control circuit in which two feedback signals with
opposite action are involved describing the ovarian cycle.
This is the case of the presence of nonlinear oscillations
when the representative equations are partially linear, as
above mentioned.

During the post ovulatory phase of the reproductive
cycle, the ovary in females answers to hormonal stimuli
with a behavior that can be modelled with the following
initial-value problem:

dR

dt
= γ +

αE

h′ + h′kP + E
− βR;

dL

dt
= γo + αoR− βoL;

dP

dt
= γ1 + α1Lt−τ − β1P ; (4)

dE

dt
= γ2 + α2Lt−τ − β2E;

R(to) = Ro; L(to) = Lo;
P (to) = Po = 0;E(to) = Eo = 0.

where:

R is (blood concentration of) the
hypothalamic realese hormone;

L is the pituitary luteinizing hormone;
P = σ1 (Π−Πpool) is the negative feed back

signal from the ovary to hypothalamus
due to progesterone
Π, whose storage capacity is
the constant Πpool;

E = σ2 (ε− εpool) is the positive feed back
signal upon hypothalamus
due to estrogen ε, whose storage capacity
in ovary is the constant εpool;

σ1, σ2 = constants;Π(to) = Πpool; ε(to) = εpool;
all γ symbol indicates the basal
production velocity in stimulation absence;
Lt−τ is null with its derivatives
at incipient process.

To write the first equation of the above system
we have supposed, as an acceptable hypothesis, the com-
petition between the feedback signals on the same hy-
pothalamic receptor :

[S]o = [S] + [SE] + [SP ];
[S]o = S(to) initial hypothalamic concentration of

receptor;
[S] = concentration of free receptor;

[SE] = concentration of receptor linked to
positive feedback signal;

[SP ] = concentration of receptor linked to
negative feedback signal.

At the chemical equilibrium:

[SE] = h[S][E]; [SP ] = k[S][P ]
h, k = kinetic constants;

therefore:

[SE] =
[S]o[E]

h′ + kh′[P ] + [E]
; h′ =

1
h

;

then we can suppose to be [S] proportional to the produc-
tion rate of hypotalamic hormone proportional to [SE],
whose degradation rate is proportional to the actual hor-
mone concentration; so we write, suppressed all square
brackets, the first balance equation.

To write the other equations we can assume the pro-
duction rate of L proportional to R, the production rate
of P and E proportional to the concentration of L at the
instant t − τ, τ representing the delay of the ovary re-
sponse as the gland becomes ”mature” for the hormone
stimulation.

We can observe that the intrinsic delay of the ovary
in outset of its answer to luteinizing hormone and the
linearity of the two last equations of the above differential
system, implies a periodic solution with period τ to the
assigned initial-value problem. In fact, the differential
equation of balance of estrogen and progesterone have
the same periodic term

Lt−τ = L(t− τ)

and it is sufficient for the existence of a periodic solution
with the same period to each linear equation, then to the
proposed differential system, because also the two first
equations are linear in R and L respectively.

Naturally the solution to the above initial value prob-
lem may be written with the same algorithm of Lie series
that we have described above.

V. CONCLUSIONS

We presented a suitable algorithm, based on special
Lie series, for the representation of the solution of an
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initial value problem, which has a delay term and refers
itself to the behavior, for example, of a biological system
controlled by a feedback signal. Classical representation
of protein synthesis can provide a case-study for this ap-
proach. We foresee nonlinear oscillations in concentra-
tions of the involved substances in similar models . We
also presented, as a further example in which oscillations
are foreseen, a simple model of the ovarian cycle in mam-
malian. This procedure, based on Lie series, is general in
principle and could be useful in many different fields of
applied research.

More specifically, from a mathematical point of view,
an initial-value problem with at least one delay term in

a finite number of equations is equivalent to an infinite
sequence of equations. In the examples presented the
classical Gröbner’s approach is not any more sufficient.
More general Lie series are necessary in order the rep-
resentation of the components of solution can be found.
In this case the Gröbner-Lie operator is an infinite sum,
formally defined by a series of first-order differential sum-
mands. Here we presented our improved solution dealing
with a classical problem in biomathematics. A lot of sim-
ilar cases arise in physiology and in pathology, as well as
in economics or engineering or more in general in physics.
Our approach wants to be just an initial answer.
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