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Abstract: - In this paper, we investigate the linear prediction of speech signals in an impulsive noise environment.
Both schemes of batch processing and adaptive processing are comparatively studied and it is shown that the adaptive
processing scheme is basically suitable in a highly impulsive noise environment. As an extended version of the Order
Statistic Least Mean Square (OSLMS) algorithm addressed by Shimamuraet al., an OSLMS algorithm involving
ambiguous sorting is developed. The performance of the proposed algorithm is demonstrated and it is shown that the
effects of impulse noise are significantly suppressed by the proposed algorithm.
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1 Introduction

In recent communication systems, a transmitted speech
signal very often corrupted by impulsive noise. This is
caused by the fact that recently, various types of con-
nection are used in the transmitted and received circuits
and mismatching of them invokes a kind of impulsive
disturbances. Furthermore, in a certain communication
system, power supply is controlled by switching, which
results in an another source of impulses. Impulsive type
disturbances distort the speech waveform, leading to a
degradation of quality and intelligibility of the transmit-
ted speech [1, 2].

Linear Prediction (LP) is a widely used technique
in speech processing systems, because it efficiently pro-
vides a compact representation of speech. The perfor-
mance of LP, however, is affected by additive noise. In
[3, 4], it has been reported that LP is very sensitive to
white Gaussian noise. Furthermore, in [5], the perfor-
mance of LP is affected by colored Gaussian noise as
well. It is expected that LP is affected in an impulsive
noise environment as well. Although a method to sup-
press an impulsive disturbance on a speech signal is pro-
posed in [7], the performance of LP in impulsive noise
is not clear.

Two commonly used methods for LP are the auto-
correlation method and the covariance method. Both are
batch processing in which one set of parameters of LP is

obtained from a segmented data. In this case, an impulse
contained in the segmented data may corrupt all param-
eters of LP. In many cases, impulsive type disturbances
appear at a very small region of a segmented data. This
means that if LP is performed sequentially, then it may
be possible to reduce the effects of impulse noise, de-
pending on the convergence characteristics of the adap-
tation scheme of LP.

From this point of view, we consider two adaptive
algorithms; LMS [6] and OSLMS [7]. The LMS algo-
rithm is simple and standard, while the OSLMS algo-
rithm retains the time information the speech data has
and has the potential to reduce impulsive noise. The
OSLMS algorithm is based onstrict sorting . If the
OSLMS is applied directly when a frame lengthN is
short, then even if the impulsive noise is absent, the con-
vergence property of the OSLMS becomes worse than
that of the LMS. This is because much more coefficients
have to be updated for the OSLMS algorithm.

In this paper, we introduce a concept ofambigu-
ous sorting instead of the strict sorting, and develop
an OSLMS algorithm with ambiguous sorting (OSLMS
with AS). The basic idea of the AS is to combine the
LMS algorithm with the OSLMS algorithm. In the AS,
when an impulse is present, the OSLMS algorithm works.
If an impulse is not present, the LMS algorithm works
normally. The OSLMS with AS provides a convergence
speed which is similar with the LMS, but has robust-
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ness against impulsive noise, which is not shared with
the LMS. These properties of the OSLMS with AS are
demonstrated in comparison with the LMS and original
OSLMS algorithms.

2 OSLMS Predictor Based on Ambigu-
ous Sorting

In this section, the OSLMS algorithm with AS is de-
scribed. This algorithm is derived from the OSLMS al-
gorithm proposed by Shimamuraet al.[7]. The differ-
ence point between the two algorithms is the sorting op-
eration for the input vector. In the OSLMS with AS, a
parameter inducing ambiguity in sorting,sdiff, is used.

Assume that the speech signal corrupted by impulse
noise is given by

s(n) = st(n) + d(n), (1)

wherest(n) is a noiseless speech signal andd(n) is an
impulsive noise. When thes(n) is used as the input sig-
nal of the estimator, the OSLMS algorithm with AS is
described as follows.

I Prepare a coefficient matrixC(n) as

C(n) =




c11(n) c12(n) · · · c1M (n)
c21(n) c22(n) · · · c2M (n)

...
...

...
...

cM1(n) cM2(n) · · · cMM (n)


 ,

(2)

and a coefficient vectorc(n) as

c(n) =
[

cm(1)1(n) cm(2)2(n) · · · cm(M)M (n)
]T

.

(3)

These are initialized asC(1) = O (zero-matrix)
andc(1) = 0 (zero-vector).

II Ambiguously sort the elements of the input vector

s(n) =
[

s(n− 1) s(n− 2) · · · s(n−M)
]T
(4)

based on the rule of the AS; that is, if

s(n− l − 1) > s(n− l) + sdiff (n) (5)

for

{
k = 1, 2, . . . , M − 1
l = M,M − 1, . . . , k + 1

is satisfied, thens(n − l − 1) and s(n − l) are
replaced.

III Assume that the resulting sorted vector is given by

x(n) =
[

x1(n) x2(n) · · · xM (n)
]T

, (6)

wherex1(n) ≤ x2(n) ≤ · · · ≤ xM (n). And
determine the integer in (3),m(j), as

m(j) = i, if xi(n) = s(n− j), (7)

and actually select the corresponding elements
cm(j)j(n) from the coefficient matrixC(n).

IV Update the coefficient vectorc(n) by means of
the normalized LMS algorithm [6] as

e(n) = s(n)− s(n)Tc(n), (8)

c(n + 1) = (9)

c(n) +
µ

s(n)Ts(n) + β
e(n)s(n).

And insert the elements of the updated coefficient
vectorc(n+ 1) into the coefficient matrixC(n +
1).

V Increase the iteration number asn → n + 1 (for
n = 1, 2, . . . , N ) and go to Step II.

To implement the above algorithm, the ambiguity pa-
rameter in (5),sdiff (n), must be determined. To do
this, the following is calculated simultaneously with the
above adaptation operation.

sdiff (n) = max
k=1,2,...,n

s̃(k)6=0

s̃(k) − min
k=1,2,...,n

s̃(k)6=0

s̃(k), (10)

s̃(n) =





0 if |s(n)| > ρ max
k=1,2,...,n−1

|s̃(k)|
s(n) otherwise

(11)

wheres̃(n) is a temporary sample andρ is a scaling pa-
rameter. Whenn = 1, s̃(n) = s(n). It is expected that
for the above OSLMS algorithm with AS, the sorting of
the input vector elements is not implemented as long as
the input signals(n) has an amplitude within that of the
noiseless signal. Therefore, only the input signal cor-
rupted by an impulsive disturbance will be sorted and as
a result, effectively the effect of impulse noise will be
suppressed. The above OSLMS algorithm with AS re-
duces to the OSLMS algorithm in the case ofsdiff (n) =
0 for all n. On the other hand, in the case ofsdiff (n) =
+∞ for all n, it reduces to the normalized LMS algo-
rithm [6].
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Figure 1: Impulse shaping filter.
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Figure 2: An example of speech signal corrupted by im-
pulsive noise on a real female vowel/a/ (in the case
where the impulse with SINR= 10 [dB] appears at
n = 128).

3 Experiments

We conducted experiments to confirm the effectiveness
of the proposed OSLMS algorithm with AS.

It was assumed that the impulse noised(n) in (1) is
generated based on theBernoulli Gaussianmodel [2] as

d(n) =
L−1∑

k=0

hI(k) {g(n− k)b(n− k)} , (12)

whereg(n) is white Gaussian noise andb(n) is a binary
random sequence with the values of 1 or 0. The impulse
response of the impulse shaping filter,hI(n), is shown
in Figure 1 whereL is set toL = 32 (this setting is
commonly used in the experiments). And, we assumed
that a speech signal as shown in Figure 2, for example,
is analyzed. This means that an impulse appears as the
disturbanceonly once(not one sample) at a random time
n in each analysis frame.

The signal-to-impulsive-noise-ratio (SINR) is defined
by

SINR = 10 log10

Psignal

α · Pimpulse
, (13)

wherePimpulseis the average power of each impulse com-
ponent, andPsignal is the noiseless signal power. Theα is
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Figure 3: Comparison of the batch and adaptive meth-
ods on a real female vowel/a/ (in the case where the
impulse with SINR= 10 [dB] appears atn = 128). The
AC, COV and LMS correspond to the auto-correlation,
covariance and LMS methods, respectively. The mark
of method(ĉ) / method(c), for example AC / COV, means
that the prediction is conducted by the method(ĉ) and the
true one is obtained by the method(c).

defined asα = NI/N , whereN is the frame length, and
NI is the number of the signal samples contaminated by
impulsive noise in the frame.

We use a pair of male and female 5 vowels /a,i,u,e,o/,
and all of the vowels are commonly sampled with 10
[kHz]. And, the predictive orderM , frame lengthN ,
step sizeµ and stabilized parameterβ employed by nor-
malized LMS in (4) are set toM = 10, N = 256 (25.6
[ms]), µ = 1.0, andβ = 0.05, respectively. In addition,
it is assumedNI = L, thenα = L/N = 0.125.

3.1 Performance Comparison
of Batch and Adaptive Methods

At first, in an impulsive noise environment, we imple-
mented the auto-correlation method and the covariance
method, both of which are batch processing, and com-
pared them with the LMS method, adaptive processing.
The performance of the three methods on a real female
vowel/a/ is shown in Figure 3 where the distance given
by

d =
‖c− ĉ‖2

‖c‖2 =
(c− ĉ)T (c− ĉ)

cTc
, (14)

wherec andĉ are the true (noiseless case) and estimated
coefficient vectors, respectively, is measured. The im-
pulsive disturbance in Figure 3 was generated atn =
128. From Figure 3, we see that both batch methods
have been affected by the impulsive disturbance, while
the adaptive method has behaved robustly against it. The
coefficient vector obtained by the adaptive method at the
end of the analysis frame is more accurate than both
batch methods.
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Figure 4: Comparison of the batch and adaptive methods
on male and female 5 vowels (average). When the value
of d is larger than 3.0, each is denoted byA,B, C, . . . .
The exact value of each is shown below the correspond-
ing figure.

Figure 4 shows the dependency of the three meth-
ods on SINR where each plot has been obtained by the
average of 500 individual trials based on noise genera-
tion. The evaluation is the distance in (14) for the coef-
ficient vector obtained at the end of each analysis frame.
From Figure 4, we see again that the adaptive method
is more accurate than the batch methods. In the case
of SINR ≥ 30 [dB], both batch methods are superior.
This is because the batch methods provide more accurate
estimates than the adaptive method in a noiseless envi-
ronment. This means that at a low SINR, the adaptive
method works more effectively than the batch methods.

3.2 Performance Comparison of LMS, OSLMS
and OSLMS with AS

Next, the performance of the adaptive method is further
investigated. Three adaptive algorithms, LMS, OSLMS
and OSLMS with AS, are compared. The prediction er-
ror by each algorithm is evaluated and a signal-to-noise-
ratio (SNR) given by

SNR [dB] = 10 log10

∑N
n=N−ν {s(n)}2

∑N
n=N−ν {s(n)− ŝ(n)}2

(15)

(The N andν are defined asN = 256, ν = 100, re-
spectively) is measured. In addition, the scaling param-
eterρ shown in (11) is set toρ =

√
2. Figure 5 shows

an example of convergence in an impulsive noise envi-
ronment. It is observed that the influence by the impulse
disturbance is suppressed by the OSLMS algorithm with
AS effectively.

Figure 6 shows the SNR obtained by the three adap-
tive algorithms in impulsive noise environments where
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Figure 5: Convergence of the three adaptive algorithms
on a real female vowel/a/ (in the case where the im-
pulse with SINR= 10 [dB] appears atn = 128).
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Figure 6: Comparison of the three adaptive algorithms
on male and female 5 vowels (average). The ABS
means that for sorting, an absolute value version ofs(n),
s(n) = [ |s(n− 1)| |s(n− 2)| · · · |s(n−M)| ]T,
is used.

500 individual trials are averaged for each plot. From
Figure 6, we see that in the region of SINR≤ 10 [dB],
the OSLMS algorithm with AS provides better SNR than
the LMS and OSLMS algorithms. This result is obvi-
ously obtained by the effect of the impulsive noise sup-
pression. Also, we see from Figure 6 that the sorting
operation based on the absolute value of each element of
the input vector provides an improvement commonly for
the OSLMS and OSLMS with AS. Impulsive noise has
plus or minus values. By taking account of absolute val-
ues of noisy speech samples, the impulsive noise com-
ponents included would be moved toxM (n) or around
of xM (n) in the sorted vectorx(n) constantly. This may
be the reason why.

3.3 Discussion

Summarizing the experimental results, we can say that
the OSLMS algorithm with AS provides the best perfor-
mance in the region of SINR≤ 10 [dB], while the batch
processing should be used in the region of SINR≥ 30
[dB]. A further performance improvement of the OSLMS
algorithm with AS is obtained by involving the absolute
value operation in sorting.
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4 Conclusions

In this paper, we investigated the performance of LPC in
impulse noise, and suggested that the OSLMS algorithm
with AS works effectively in a highly impulsive noise
environment.
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