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Abstract: - Scale-invariant forms of conservation equations are applied to present a modified hydro-thermo-
diffusive theory of normal shock waves.  The internal structure of a normal shock is described at the scale of 
laminar molecular-dynamics. The predicted shock thickness and temperature profile are found to be in good 
agreement with the experimental observations.   
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1 Introduction 
The universality of turbulent phenomena from 
stochastic quantum fields to classical hydrodynamic 
fields resulted in recent introduction of a scale-
invariant model of statistical mechanics and its 
application to the field of thermodynamics [6-7].  The 
invariant forms of conservation equations were 
subsequently employed to present a modified theory of 
laminar flames [8].   The scale-invariant model of 
statistical mechanics for the intermediate scales of 
eddy-, cluster-, and molecular-dynamic is 
schematically shown in Fig.1.  
 In the present study, the invariant forms of the 
conservation equations are applied to investigate the 
hydro-thermo-diffusive structure of normal shock 
waves.   Because the thickness of shock wave is 
known to be of the order of a few molecular mean-free-
paths, the continuum assumption of classical fluid 
dynamics is clearly not applicable to the study of the 
internal structure of shock waves.  However, according 
to the scale invariant model of statistical mechanics [6, 
7], the phenomena of Brownian motions suggest the 
existence of a new equilibrium statistical field at an 
intermediate scale called equilibrium cluster-dynamics 
ECD that separates the field of equilibrium eddy-
dynamics EED (isotropic homogeneous turbulence) 
from equilibrium molecular-dynamics EMD (Fig.1). 
Therefore, the model allows one to move to the 
adjacent statistical field within the hierarchy at the next 
smaller scale called equilibrium molecular-dynamics 
EMD (Fig.1).  The invariant forms of conservation 
equations are then applied at this new scale in order to 
investigate the internal structure of the shock wave.  
                                                             
 

2 Invariant Forms of the Conservation 
Equations for Reactive Fields 
Following the classical methods [1-5], the invariant 
definitions of the density ρβ, and the velocity of atom 
uβ, element vβ, and system wβ at the scale β are given 
as [7]  
 

ρ n m m f duβ β β β β β= = ∫
 

, uβ = vβ−1 (1) 
 

1m f d−
β β β β β β= ρ ∫v u u

 
, wβ = vβ+1 (2) 

 
Similarly, the invariant definition of the peculiar and 
diffusion velocities are introduced as    
 

β β β′ = −V u v     ,      1β β β β′+= − =V v w V  (3) 
 

 Following the classical methods [1-5], the scale-
invariant forms of mass, thermal energy and 
momentum conservation equations at scale β are 
given as [8]   
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involving the volumetric density of thermal energy 
ρ hβ β βε =  and linear momentum .  Also,  ρβ β=p βv
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Fig.1 Hierarchy of statistical fields for 
equilibrium eddy-, cluster-, and molecular-
dynamic scales and the associated laminar flow 
fields. 
 

βΩ  is the chemical reaction rate, is the absolute 

enthalpy [6], and  is the partial stress tensor [1] 

hβ

βP
 

β β β β β β βm (  )(  )f du= − −∫P u v u v β  (7)
  

In the derivation of (6) we have used the definition of 
the peculiar velocity (3) along with the identity 
 

i j i i j j i j i( )( )β β β β β β β β β β′ ′ = − − = −V V u v u v u u v v j

β β

β

 (8) 
 
 The transport of mass, linear momentum, and 
thermal energy are considered to occur by both 
convection and diffusion.  Hence, the local velocity 

 in (4)-(6) is expressed in terms of the convective 

 and the diffusive  velocities [8]  
βv

βw βV
 

gβ β= +v w V  ,      (9a) g D ln( )β β= − ρV ∇
 

tgβ β β= +v w V  ,     tg ln( )β β= −α εV ∇  (9b) 
 

hgβ β β= +v w V  ,     hg ln( )β β β= −νV p∇  (9c) 
 
where (Vβg, Vβtg, Vβhg) are respectively the 

diffusive, the thermo-diffusive, the linear hydro-
diffusive velocities. 
 

 By substitutions from (9) in (4)-(6) one obtains, 
for constant transport coefficients, the scale-invariant 
forms of conservation equations [8]. 
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An important feature of the modified equation of 
motion (12) is that it is linear since it involves a 
convective velocity wβ that is different from the local 
fluid velocity vβ.   
 The classical form of the continuity equation (4), 
while being equivalent to (10), does not contain a 
diffusion term and hence cannot clearly reveal the 
separate roles of convection versus diffusion within 
the shock structure. As a result, in the classical 
theory of shocks in a pure gas, density discontinuity 
could only be presented as jump condition across the 
shock.  However, because the modified form of the 
continuity equation (10) does contain a diffusion 
term, it allows for the analysis of the internal 
structure of shock waves that is the objective of the 
present study.    
 It is now shown that by summation of (4)-(6) over 
(β) one can arrive at the conservation equations at 
the next higher scale of (β+1) of the hierarchy 
(Fig.1).  The summation of (4) gives  
 

1β β+
β

ρ = ρ∑  (13) 

 

and  
 

1Yβ β β β+ β β
β β β
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   1 1 1Y 1β+ β β β+ β+ β+
β
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For (6), the summation of the first term is the same 
as (14) above. To treat the summation of the second 
term of (6), one starts with (3)  
 

1 1β β β β+ β+′= + = +v w V v V    (15) 
 
Multiplying (15) by (Yβ+1 ρβvβ) and summing over 
(β+1) and (β) leads to 
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 (16) 

 
Where Y is mass fraction and use was made of the 
relation  from (3) in the last step.   1 1β+ β+ β+= +v w V
 For the summation of the energy equation (5) one 
first notes that 
 

1β β+
β
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and next multiplying (15) by  one obtains  1Yβ+ βε
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3 Connection to the Navier-Stokes 
Equation of Motion 
The original form of the Navier-Stokes equation with 
constant coefficients is given as [1, 9] 
 

2 1P (
t 3

∂
ρ ρ = − + µ∇ + µ

∂
v + v v v v.∇ ∇ ∇ ∇. )

ii

 (19) 

 
The pressure P in (19) is related to the 
thermodynamic pressure p through the total stress 
tensor  and is called mechanical 
pressure defined as [10] 

ii ij ijT p− δ + τ=

 

m iiP P (1/ 3)T p (1/ 3)= = − = − τ   (20) 
 
The normal viscous stress is given by the flux of 
momentum  such that the 
gradient of (20) reduces to 

ii(1/ 3) (1/ 3)τ = − µ v∇.

 

m
1P P p (
3

= = + µ v∇ ∇ ∇ ∇ ∇. )             (21) 

 
Substituting from (21) in (19), the original Navier-
Stokes equation assumes the form  
 

2 p
t

∂
− ν∇ = −

∂ ρ
v + v v v 

∇
.∇    (22) 

 

that is almost identical to the modified equation of 
motion (12) with Ωβ = 0 except for the important fact 
that the latter is linear since the convective velocity 

w is different from the local velocity v.  However, 
because (22) includes a diffusion term and w and v 
are related by = +v w V , it is clear that (22) should 
in fact be written as (12).  
 In order to facilitate the future application to the 
study of detonation waves, the one-dimensional form 
of invariant conservation equations for reactive fields 
are described and later simplified by neglecting the 
reaction terms.  For propagation of a planar laminar 
flame, one introduces the dimensionless parameters  
 

u b u(T T ) /(T T )θ = − −          ,          F Fy Y / Y= u

/
 

2
F F o[ W B /( v )]e−β χ′Λ = ν α ρ  (23) 

 
The adiabatic flame temperature Tb, the 
Zeldovich number β, and the coefficient of 
thermal expansion χ are  
 

b u Fu F FT T QY /( W cp )= + ν  
 

2
b uE(T T ) / RTβ = − b  (24) 

 

b u(T T ) / Tbχ = −    
 
 

and one assumes that  β >>1.  Equations (10)-(12) 
for laminar cluster-dynamic scale β = c that 
corresponds to conventional gas dynamics become 
[8] 
 

2
( 1)

x f2

y y yw D ye (
t x x

β θ−∂ ∂ ∂ x )′ ′+ = − Λ δ
′ ′ ′∂ ∂ ∂

 (25) 

 
2

( 1)
x f2w ye

t x x
β θ−∂θ ∂θ ∂ θ (x )′ ′+ = α + Λ δ

′ ′ ′∂ ∂ ∂
 (26) 

 
2

( 1)
x f2

v v v 1 pw v y
t x x x

β θ−′ ′ ′∂ ∂ ∂ ∂ e (x )′ ′ ′+ = ν − + Λ δ
′ ′ ′ ′ ′∂ ∂ ∂ ρ ∂

 

  (27) 
 
In the following, the conservation equations (25)-
(27) are employed to study of internal structure of 
normal shock waves in non-reactive fields. 
 
 
4 Hydro-Thermo-Diffusive Theory of  
 Normal Shock Waves 
For description of the structure of a one-dimensional 
shock wave propagating in an otherwise quiescent 

xw 0′ =  non-reactive Ωβ = 0 ideal gas, the invariant 
conservation equations (25)-(27) reduce to 
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with the dimensionless variables defined as 
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′
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The equation for pressure can be directly deduced 
from that of density and temperature and the ideal 
gas law p  when R is the gas constant. R′ ′= ρ T

 

 The conventional gas dynamics corresponds to 
scale of laminar cluster dynamics LCD (Fig.1) with 
the characteristic (atomic, element, system) lengths 

 and the 
associated velocities , where the 
subscript β = c refers to LCD.  Also, the relevant 
kinematic viscosity for this scale is νc = lcuc/3 = 
λ

c c
7 5 3

c , ,(l  ) m10 10  L 10− − −λ= = =

c c c( , , )u v w

mvm/3 [6].   At LCD scale the shock wave appears 
as a mathematical surface of discontinuity separating 
the supersonic flow  with the temperature 

 before the shock from a subsonic flow field 
 with the temperature T  after the shock as 

shown in Fig.2a.   

LCD−∞

T−∞

LCD∞ ∞

 

  

SHOCK

w' s w' g

x '  =  − ∞ x '  =  ∞  
 
Fig.2a Propagating shock wave at the scale of 
laminar molecular-dynamics LMD, β = m. 
 
The gas behind the shock moves in the same 
direction as the shock at the velocity  [11].  The 
unsteady problem of shock propagating in quiescent 
gas can be converted to a steady problem of a 
stationary shock by the introduction of the moving 
coordinate  as shown in Fig.2b  

gw′

z x w t′ ′ ′= + ′
 

 

 

  

SHOCK

z'  =  ∞z'  =  − ∞

w  = 1 − wg

w  =  1

 
 
Fig.2b Stationary shock wave at scale of laminar 
molecular-dynamics LMD, β = m. 
 
 For the study of structure of shocks, as opposed 
to that of laminar flames, one must move to the 
lower scale of laminar molecular dynamics LMD 
(Fig.1) with the characteristic (atomic, element, 
system) lengths  
and the associated velocities .  The 
kinematic viscosity for this scale is νm = lmum/3 = 
λ

m m
9 7

m , ,(l  ) m10 10  L 10− − −λ= = = 5  

′

m m m( , , )u v w

ava/3 [6]. The conservation equations (28)-(29) in 
terms of the steady coordinate  become z x w t′ ′ ′= +
 

2

m 2

df d fw
dz dz

′ = ν
′ ′

     f   (31)  ,  , p = ρ θ

 
2

m 2
s

dv d v 1 dpw
dtz dz w dz

′
′ = ν −

′ ′ ′ ′ρ ′
   (32) 

 
The velocity w′  in (31)-(32) is considered to be the 
appropriate constant mean velocity that makes the 
shock wave stationary.  In the following, it will be 
shown that this constant velocity is the average of 
the coordinate-dependent velocity within the internal 
aerodynamic shock structure. Because the shock 
thickness is of the order of a few mean free paths of 
molecules, its internal structure is not yet revealed in 
terms of the dimensional physical coordinate z′  as 
shown in Fig.2b.  
 To finally reveal the hydro-thermo-diffusive 
structure of the shock, one introduces the stretched 
coordinate and time  
 

Hz z / l′=           ,        H st t /(l / w )′ ′=    (33) 
 
where the hydro-diffusive thickness is defined as 
 

H m sl / w 1′= ν     (34) 
 
such that (31)-(32) become 
 

2

2

df d fw
dz dz

=    f    (35)  ,  , p = ρ θ
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s

R[T(T T ) T ]dv d v dpw
dz dz w  p dz

∞ −∞ −∞′ ′ ′− +
= −

′
 (36) 

 
that are subject to the boundary conditions 
 
z → ∞          ,      p 1ρ = θ = = gv 1 w= −        (37a) 
 
z → −∞       ,      p 0ρ = θ = = v 1=                     (37b) 
 
The calculated structure of the shock wave is finally 
revealed under the spatial resolution of the stretched 
coordinate z as shown in Fig.3. 
 

 

w = 1

ρ = θ = p = 0

ξ = 0

ρ = θ = p = 1

ξ = - z =  ∞ ξ = - z = - ∞

w = 1 − wg

 
 
Fig.3 Hydro-thermo-diffusive structure of a 
stationary shock wave at LMD scale β = m. 
 
 At the LMD scale, dissipation occurs through 
transformation of mean molecular motions to 
molecular motions m c m a= ⇒ =v u u v  thus 
accounting for the irreversible nature of flow across 
the shock.  Hirschfelder and Curtiss [12] emphasized 
the significance of diffusion process to the classical 
theory of detonation  
 

"Some time ago, George B. Kistiakowsky bet one 
of the authors (J. O. H.) a case of American 
champagne against a bottle of French 
champagne that indeed the transport properties 
do not appreciably affect the behavior of a 
detonation.  This bet has served as an incentive 
for the present work" 

 
The important role of transport phenomena at 
“atomic” scales is also evidenced by the observed 
correlation between the detonation velocities of 
various combustible mixtures and the velocity of 
certain “atomic” radical species discussed in an early 
investigation of chain reaction theory of explosion 
by Lewis [13].   
 The classical objection against possible role of 
diffusion in detonation waves is that the wave 
thickness is of the order of the molecular mean-free-

path. However, this objection is no longer relevant 
because dissipative processes in conventional gas 
dynamics will involve  that is 
now associated with the intermediate statistical field 
of ECD (Fig.1).  For shock and detonation waves, on 
the other hand, dissipative effects are herein 
suggested to correspond to  that 
occur at the smaller scale of LMD (Fig.1). This is 
also harmonious with the observed correlation 
between detonation velocities and the mean thermal 
speeds of “atoms” as was noted by Lewis [13]. 

c e c= ⇒ =v u u vm

am c m= ⇒ =v u u v

 The higher spatial resolution of the stretched 
coordinate z also reveals the coordinate-dependence 
of the convective velocity w in (35)-(36) that in view 
of the boundary conditions (37) becomes 
 

gw 1 w (z 1/ 2)= − +        (38)  
 
The velocity at the center of the shock (Fig.3) will 
correspond to the mean value of (38) that is 

av gw 1 w / 2= − .  In supersonic flows the velocity 
of sound usually exceeds its value at the standard 
conditions such that the inequality  m/s 
holds.  Therefore, the last term of (36) involving the 
logarithmic gradient of the thermodynamic pressure 
that multiplies  can be neglected.  
Substituting (38) and the new coordinate 
transformation  

sw 35′ ≥ 0

2
s1/ w 1′

 
1/ 2

g g(2w ) [1 w (z 1/ 2)]−ξ = − +  (39) 
 
into the conservation equations (35)-(37) results in 
 

2

2

d f df2 0
d d

ξ+ =
ξ ξ

  (40) f  ,  , p , v= ρ θ

 

ξ → −∞        p 1ρ = θ = =     ,    gv 1 w= −    (40a) 
 

→ ∞ξ   p 0ρ = θ = =     ,              (40b) v 1=
 
that lead to the solutions  
 

 

ρ p (1/ 2)erfc= θ = = ξ    (41) 
 

gv 1 (w / 2)erfc= − ξ    (42) 
 
The solutions (41) represent the steady shock 
structure and the calculated temperature profile 
involving error function is in close agreement with 
the experimental data of Sherman [14] as shown in 
Fig.4   
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Fig.4 Comparisons between measured 
temperature θ  versus position (y – 0.2) for a 
normal shock [14] and the prediction in (41). 
 
 According to the solutions (41)-(42), upstream 
and downstream edges of the shock wave will be 
respectively at  and  2+ξ = 2−ξ = −  to an accuracy 
of 0.995 such that the predicted shock thickness 

 that in view of (33), (34) and (39) is 
 becomes 

( − +ξ − ξ = −4)

s (z z )+ −′ ′δ = −
 

m
s 2

g s s s

4 2 4 2
w w w w w

ν ν
δ = =

′ ′
m

a
′ ′ ′−

        (43)  

 

that is analogous to the laminar flame thickness [8] 
 

m
f

f
T4 2 4 2

w
ν

δ =
′

=         (44)  

 

where  is the laminar flame speed.  According to 
(43), the shock thickness  linearly increases with 
the viscosity ν

fw′

sδ

m and decreases with the shock 
velocity .  The result (43) is also harmonious with 
the expression suggested by Granger [15] for 
estimating the thickness of shocks on the basis of 
phenomenological arguments  

sw′

 

m
s

sw
ν

δ =
′

    (45) 

 

For the typical value of Mach number bMa 2.5= , 
the velocities before and after the stationary shock 

m/s, m/s are related by 
[11] 

sbw w 875′ ′ == aw 26′ = 2

 

2
b 1

2
a 1

w ( 1)Ma
w ( 1)Ma

′ γ +
=

′ γ − + 2

3

 (46) 

 

and lead to m/s. Assuming a 

molecular diffusivity of  for air one 
calculates from (43) the shock thickness 

g s aw w w 61′ ′ ′= − =

m
20.2 cm / sν =

 

7
s 1.5 10  m−δ ×        (47) 

 

that is consistent with the typical values reported in 
the literature [11, 14, 15]. 
 
5 Concluding Remarks 
The invariant forms of conservation equations were 
solved to present a modified hydro-thermo-diffusive 
theory of steady shock waves.  The predicted 
temperature profile and thickness of normal shock 
were found to be in good agreement with the 
experimental observations.  
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