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Abstract: -This paper introduces a new design combining wheeled mobile robots and parallel mechanism for the 
purpose of manipulation. The movable platform consists of a hexagonal platform, which is rigidly fixed to three 
inclined planes regularly fixed at three of its sides. Contrarily to the previous similar works, the platform is not 
linked to mobile robots but lies down on three free different ball wheels located at the tip of a vertical and rigid 
link fixed at the top of each mobile robot. The mobile robot motions in horizontal plane are transformed through 
the frictional contact between ball wheels and inclined planes to transport or orient the platform. 
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1. Introduction 
Parallel manipulators have attracted robotics designers 
since some decades ago and most of the presented 
manipulators have been based on the principle of 
connecting a movable platform to the base through 
actuated and passive joints [1], [2]. Generally this 
strategy leads to manipulator with restricted mobility 
i.e. with a number of degree-of-freedom less than six 
[3]. They also suffer from smaller workspace of the 
platform. Recently researches have been focused on 
parallel manipulator supported by wheeled mobile 
robots (WMR) to solve this mobility limitation 
problem of parallel mechanisms. Regarding this topic 
only a small number of works can be found in robotic 
literature and one of them is ref. [4] of this paper. But 
in ref. [4] design, the links connecting each rolling 
machine (cart) to the platform have been accomplished 
through a spherical joint and a revolute joint so that 
the directions of the static forces vary and depend on 
the platform position and orientations. This 
phenomenon has brought a complex dynamic to the 
design. The parallel mechanism we introduce in this 
paper does not have any joint and its performance lays 
down on the mobility of the three supporting WMR. 
Some WMR equipped with a combination of some 
specified wheels have full mobility. WMR mobility 
has been discussed in several papers [5], [6]. Their 
collaborations also have been object of several 
researches [7]. These topics are not the aim of this 

paper but we consider that the three supporting 
WMRs have full mobility, which allows them to reach 
any point without complex maneuvers. At the top of 
each of these robots is fixed a vertical link with 
constant height. A free ball wheel connected to each 
link tip is able to rotate about the ball center in any 
direction. The pressure of the platform weight 
maintains the contacts ball-inclined planes. The 
platform adopts a new position and orientation 
anytime when at least one of the robots changes its 
posture. The stability of the system depends on 
platform weight and the WMRs position with respect 
to the inclined planes. The workspace depends on the 
platform dimensions and the inclination angle of 
inclined planes. The inverse and direct kinematics of 
the system are presented in section.3. 
 
 
2. Model descriptions and its mobility 
The model of parallel manipulator presented here 
consists of two main parts: the movable platform and 
three rolling machines (WMR) as shown in Fig.1. The 
movable platform is composed of a hexagonal 
platform P and three inclined planes ( i=1,2,3 ) 
having same inclination angle 

iP
θ  with respect to 

platform P. They are fixed to three of the six sides of 
the hexagon (Fig.2 and 3). The rolling machines 
numbered as R ( ) are able to move into iobot i=1,2,3
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any direction in a horizontal plane  of the 
world coordinate system R :  attached to 
the ground.  
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,X,Y,Z)(O

,X,Y)

jRobot

k
ibot

≠ ≠

 
 

   
 
       Fig.1: model of the manipulator 
 
A rigid link is fixed to the top of each WMR. A free 
ball wheel is located at the link top, which is in contact 
with the corresponding inclined plane. Simply the 
movable platform can be just considered as relied 
down on the robots through the contact ball wheels-
inclined planes. The purpose of the ball wheels is to 
allow relative rolling motion without slipping between 
the inclined planes and WMRs. The entire system can 
be assimilated with three fingers grasping and 
manipulating an object. A coordinate system 

: (O  is attached to each R  
( ) and the last coordinate system to be defined 
isR :

iR i i i i,X ,Y ,Z )
i=1,2,3

p

iobot

p p p,X ,Y ,Zp )(O witch is connected to the 
platform.  
When the three WMRs move in translation having a 
same direction and velocity in plane (O of frame 
R, the platform will be transported at the same 
direction with the same velocity. The translation of the 
movable platform with respect to Z-axis is obtained 
when each robot relates to or moves away from the 
hexagonal platform. The rotation of the movable 
platform is possible about any axis passing by point 

 and  when and have fixed 
postures and moves ( i j ). The rotation 
about Z-axis is obtained when each WMR adopts a 

circular motion about Z-axis with a synchronized 
velocity. 

iA jA Ro

kRobot

 

 
 
                       Fig.2: Kinematics model    
 
 
3. Kinematics 
This section deals with the kinematics of parallel 
manipulator. It contains two parts, inverse and forward 
kinematics. The inverse kinematics involves mapping 
a known posture (position and orientation) of the 
platform to a set of postures of the three supporting 
WMR. The forward or direct kinematics can be stated 
as follow: given a posture to each WMR, compute the 
position and orientation of the platform. The 
kinematics is built upon the following assumptions:  
-The robot wheels move on a horizontal plane. 
-The wheels are not deformable and their contacts with 
the ground are a point. - Robot wheels and ball wheels 
motions are pure rolling leading to a null velocity at 
the contact point. 
-No slipping, skidding, sliding or friction for rotation 
around the contact point. 
The hexagon parameters are defined by points  and 

( ) located at its six vertices. Each couple 
( , ) defines the two extremities of platform P and 
plan intersection line (Fig.3). In the same figure 

iB

iC

iB
i=1,2,3

iC

iP
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Point D represents the common intersection point of 
each plane P ( ) and Z axis of R . In Fig.2 

point ( ) defines the contact point between 
plane  and the corresponding  top. We define 

 as point  height with respect to the ground. 
Height  is constant. 

i

i=1,2,3
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 Fig.3: movable platform vertices 
 
 
3.1 Inverse kinematics 
The different orientations and the position of origin 

p , of the platform frame are 

known. With them we have to find we postures  
and 

Tz

ix
 ( i=1,2,3 ) of the three mobile robots. We 

define angles α ,  and as respectively the platform 
yaw, pitch and roll. Then the rotation matrices 

,R( ,R(  expressing the orientation of R  
respectively with respect to Z-axis, Y-axis and X-axis 
of frame R  are given by: 

γ

)α p

 
 

sin
) os

0 0

α α
        (1) 

cos 0 sin
R( ) 0 1 0

sin 0 cos

β β
β

β β

 
 
 =  
 −  

         (2) 

 
1 0 0

R( ) 0 cos sin
0 sin cos

γ γ
γ γ

γ

 
 
 = − 
 
  

           (3) 

 
The complete rotation matrix of R  with respect to  
is given by multiplying equations (1), (2) and (3) and 
expressed as follow 

p R

 
( )R , , =R( )R( )R( )α β γ α β γ                (4) 

 

 
                Fig.4: hexagonal platform vertices 
 
We assume that the hexagonal form of P is regular 
and can be inscribed in a circle of radius r(Fig.4). 
The coordinates of points C  and D in frame 

:
iB , i

pR p p p p,X ,Y ,Z )

pR p
i RC

(O  can be described by vectors 

, [ ] ( i ) and [ ]iB =1,2,3 [ ]
pRD . We obtain: 
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Hence, for a given posture and orientations of the 
platform the inputs, which are the three robots 
postures, are computed by considering that 
vectors [ ]i i RB ,C , [ ]i RB ,D  and [ ]i i RB ,A   ( i=1,2,3 ) are 
linearly independent. They constitute a basis of plane 

. Finally the inputs are given by the following 
equation 

iP

det

 pO

[ ]
pR

o

0
D 0

-rsin cos30θ

 
 
 

=  
 
 
  

               (6) 

 
The coordinates of the above points in the fixed frame 
R are expressed as follow: 
 
[ ] ( ) [ ]

pi iR R R
B R , , B Oα β γ  = +   p         (7) 

[ ] ( ) [ ]
pi iR R R

C R , , C Oα β γ  = +   p          (8) 

[ ] ( ) [ ]
p pR R R

D R , , D Oα β γ  = +                (9)   

Where vector represents the coordinates of p R
O 
   pO  

in the fixed frame. Three non-aligned points are 
enough to define a plane in a space. With equation (7), 
(8) and (9) we have completely defined for each plane 

 three non-aligned points B ,  and D.  
posture  and 

iP i iC ibotRo

ix iy  represent the coordinates of the 
origin O  ( i=1,2,3 ) of the frame R : in 
the fixed frame R. The coordinates of the contact 
points ( i=1,2,3 ) are given by the following vector:  

i

iA

i i i(O ,X ,Yi ,Zi )

 

[ ]

 
 
= 
 
  

i RA
i

i

x

y

h
                                             (10) 

 

i i i i i
R

B C ,B D, B A 0= ,   i=1,2,3          (11) 

 
Equation (11) is a system of three independents 
equations. Each of them represents the equation of a 
line in horizontal plane  of the world 
coordinate system R : (O  attached to the 
ground. Infinity postures (  verifying equation 
(11) can be found for each mobile robot. The 
conclusion is that each mobile robot can move in a 
corresponding line represented by equation (11) 
without changing the platform position and 
orientations. 

(O,X,Y)
,X,Y,Z)
,i ix y )

 
3.2 Direct kinematics 
Robots postures  and ix iy  are known; the different 
orientationsα , ,  and the position of origin β γ pO , 

( )  = R
Tx y z of the platform frame are 

unknown. To solve the direct kinematics problem we 
need to build at least six equations because the total 
unknowns are six. For that we consider the system of 
three equations forming by equation (11) to which we 
have to add three more. To proceed in this way we 
define the platform stability constraint as follow: the 
platform has a maximum stability when the 
perpendicular projection of each robot posture on the 
projection of [ ]iB ,Ci  segment in plane (O  
coincides with the same segment middle. If point  
is the middle of 

,X,Y)
iM

[ ]i i RB ,

B C

C then the dot product of 

vectors i iR i i and RO M  is equal to zero which is: 

 
            B Ci i i iR R.O M 0=                    (12)     i=1,2,3
 
Equation (12) is computed only with the  and Y  
components of the two vectors in plane . The 
system of equations (11) and (12) consists of the direct 
kinematics of the mechanism. 

X
,X,Y(O )

 
4. Example 
In this section we illustrate with an example the 
inverse kinematics of the system. Table.1 represents 
the given values of the platform parameters. 
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                  Table.1: parameter values 
 
We also give the following values to the platform 
orientations and the position of origin pO  

α = 00  ; β ;  and = 00 γ = 030



70
4

)




 
  p R
O

α βR ,

0

γ,

=

(

.With these values 

 becomes 
 

( )α β γ



 

= − 
 
   

0 0

0 0

1 0 0

R , , 0 cos 30 sin 30

0 sin 30 cos 30



(13) 

The coordinates of the platform vertices are computed 
using equations (7),(8) and (9) then the inverse 
kinematics is partially solved by the following three 
equations 

1

1 1 1 1 1 1
R

1 1 1
2 2 2
3 6 3 3det B C , B D,B A 0
4 8 4
3 2 3 3 3 1

4 8 4

x

y

− −

+
= +

− +

=  (14) 

 

2

2 2 2 2 2 2
R

1 11
2 2

3 6 3det B C ,B D,B A 0
8 2

3 1 3 0
4 8

x

y

− −

−
=

− −

0            5. Conclusion                          − =

 

3

3 3 3 3 3 3
R

3 1 1
2
3 3det B C , B D, B A 0
4 8
3 3 1

4 8 4

x

y

+

= − =

−
−

    (16) 

 
Finally equations (14), (15) and (16) become 
respectively  
 

1 1
3 2 3 6 36 3 0

16 8 16 64
y x

  −  − − +  
=              (17) 

 

2 2
2 3 7 3 9 5 3 3 0

8 32 64
y x

 + − − − + +  
=      (18) 

 

3 3
4 3 9 3 12 3 3 0

16 8 64
y x

 − + − + +  
=            (19) 

 
Equations (17), (18) and (19) represent the three robot 
postures. They are line equations in plane (in Fig.5). 
Point ,  and N  consist of their intersections. 
The robot postures are totally defined by choosing the 
middle of segment 

1N 2N 3

   jiNN . 

 

 
                 Fig.5: robot postures 

 
 

The quality of a parallel manipulator performance 
depends mainly on its number of degree-of-freedom 
and its workspace. The parallel manipulator presented 
in this paper has these two qualities. It can perform 
any motion in space. Even if the workspace have not 
been highlighted in this paper it is easy to find out that 
it depends mainly on the inclination angle of the 
inclined planes and their size. It also has the 
particularity to not have connecting joints. The direct 
and inverse kinematics of the system have been 
analyzed. 
This present study can be a framework for future 
works such as the system dynamics, which leads to the 
coordinated control of the three WMRs. 
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