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Abstract: - The need for web services is constantly increasing, while the requirements for web services are getting 
more and more complicated. Thus, web server systems with ever increasing performance are constantly in need. 
To efficiently satiate this need, web cluster systems, which have been a topic of much research, have been 
suggested due to its scalability. In this paper, we design and implement a scalable web cluster system using a 
light-weight cluster control protocol on the IP layer in the Linux operating system. Experimental results illustrate 
that our implementation of the web cluster system linearly improves performance as the server nodes increase. We 
show that although the web cluster control protocol implemented on the IP layer does not support any reliable 
mechanism, the problem related to packet loss or fault has little effect on the system performance. 
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1   Introduction 
With the continuous increase of Web users, the web 
server not only executes lots of complicated programs, 
but also contains web pages that include more and 
more heavy embedded objects such as image, sound, 
and movie clips. In this regard, web server systems 
with ever increasing performance are constantly in 
need. However, in order to address this need, it is not a 
cost-effective solution to continually purchase a server 
system that has ever more higher performance. As a 
cost-effective solution to satiate this need, a web 
cluster system has been suggested due to its 
scalability. 
 Although a web cluster system consists of several 
system nodes, it gives an illusion of a single system. 
One of the most important advantages of a web cluster 
system is that it is easy to extend its performance. One 
research goal related to web cluster systems is to 
design and implement a scalable web cluster system 
that linearly improves its performance as the number 
of internal server nodes increase. Considerable 
research has been conducted in an attempt to achieve 
this goal [1]. 
 Generally, a conventional web cluster control 
protocol is implemented on the TCP layer. This 
control protocol can provide reliability in a web 
cluster system when the control packet disappears or is 
damaged. However, control protocols based on TCP 
are generally complex and heavy because they 

incorporate many complicated processing 
mechanisms in order to deal with the several 
exceptions that could possibly happen [2]. 
 Considering current advanced network 
infrastructures, the ratio of packet loss or fault in LAN 
is very low. Studies have shown that the growth of 
network technology is around 2 times faster than that 
of computer system technology [3]. Through this 
study, the inference that packet loss or error will not be 
a concern any more in the near future is persuasive. In 
this respect, our goal is to explore the effect on system 
performance when a web cluster system is 
implemented on the IP layer, which does not support 
any reliability for the control packet. 
 If the web cluster system is implemented on the IP 
layer, the only way to ensure control packet reliability 
is to rely upon the retransmission mechanism of the 
TCP connection that is established between a client 
and the web cluster system. Even so, our experimental 
results illustrate that the web cluster system based on 
the IP layer shows scalable performance that is almost 
identical to an ideal system.  
 This paper describes the design, implementation 
and performance of a web cluster system that uses a 
Light-weight Cluster Control Protocol (LCCP) 
implemented on the IP layer. The following section 
reviews general approaches in implementing a web 
cluster system. Section 3 describes our design of the 
web cluster system. Section 4 presents a brief 
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description of the implementation of the web cluster 
system in Linux. Section 5 presents experiments that 
evaluate the performance, stability, and scalability of 
our web cluster system. The final section summarizes 
our work. 
 
 
2  Related Work 
Considerable studies have been conducted regarding 
web cluster systems and they can be classified into 3 
different categories. In the first category, the studies 
consider the mechanisms used to construct and operate 
web cluster systems. In the second category, 
researchers consider developing algorithms that 
balances loads among several server nodes in the web 
cluster system [1]. In the last category, approaches to 
overcome the overloaded state in the web cluster 
system are considered [4]. In this section, we focus on 
the first category as this is most relevant to the topic of 
this paper. 
 The architecture of a general web cluster system is 
represented in Figure 1. A web cluster system consists 
of a front-end server, which is commonly called the 
web switch, and back-end servers. Web cluster 
systems are divided into layer-4 or layer-7 web cluster 
systems according to the information that is 
considered by the front-end server when distributing 
client requests to the server nodes. Web cluster 
systems are also classified into one-way or two-way 
architectures according to whether the front-end server 
relays the packet flows between a client and a 
back-end server in only one direction or in both 
directions, respectively [1]. 
 The layer-4 web cluster system consists of a layer-4 
web switch and back-end servers. The layer-4 web 
switch forwards packets from clients to the back-end 
server according to the destination IP address and the 
port number of the packet. There are many packet 
forwarding mechanisms in the layer-4 web switch 
such as NAT (Network Address Translation) [5] and 
IP Tunneling [6]. Currently, this type of layer-4 web 
switch showing high performance is available in the 
market [7, 8]. Furthermore, NAT and IP Tunneling 

techniques are being provided as patches or built right 
into the Linux kernel through the Linux Virtual Server 
Project [9, 10].  
 When layer-7 web cluster systems distribute the 
packets from clients to the back-end servers, the 
front-end server applies a content-aware distribution 
algorithm while considering the IP address and port 
number of the requested packet. TCP handoff [2] and 
TCP splicing [11, 12, 13] are two of numerous 
mechanisms that allow the front-end server to use 
content-aware distribution algorithms. TCP splicing 
adopts a two-way architecture, easily making the 
front-end server a bottleneck. To relieve this issue, the 
TCP handoff mechanism uses a one-way architecture, 
but this mechanism still suffers from limited 
scalability. Aron et al. resolve this problem by 
dividing the front-end server's functionality into the 
dispatcher that executes the layer-7 dispatching 
algorithm and the distributor that operates the TCP 
handoff mechanism [14]. The distributor is scattered 
to all of the server nodes. 
 
 
3  Design of the LCCP 
In this section, we describe the architecture of the web 
cluster system that our implementation is based on. 
Then, we describe the design of a scalable 
Light-weight Cluster Control Protocol (LCCP) that 
controls the web cluster system. 
 
 
3.1 Components 
Figure 2 shows the architecture and internal 
components of the web cluster system implemented in 
this paper. We use the layer-7 web cluster system 
design proposed by Aron et al. [14]. The web cluster 
system consists of a layer-4 switch, a dispatcher, and 
web server nodes that are internally composed of a 
distributor and forwarder. Each component works as 
follows.  
 A layer-4 switch is an interface between external 
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web clients and the web cluster system. Basically, a 
layer-4 switch passes SYN packets from web clients to 
server nodes in the web cluster system. A TCP 
connection is established between a client and the 
server node that receives the SYN packet. To preserve 
the TCP connection between the client and the server 
node, the layer-4 switch forwards subsequent packets 
to the server node which received the SYN packet. A 
dispatcher decides which server node will actually 
serve the web client request. This decision is based on 
the content of the web request. A distributor manages 
the TCP handoff mechanism [2], which hands off a 
TCP connection from one server node to another. 
Through the TCP handoff mechanism, it is possible to 
pass along a TCP connection among internal server 
nodes whenever the server originally connected to the 
client differs from the server that actually has to serve 
that client. A forwarder forwards subsequent packets 
such as ACKs and FIN to the server node that actually 
processes the web request, since the TCP handoff was 
already occurred. 
 
 
3.2 Light-weight Cluster Control Protocol 
Internal nodes of the web cluster system need to 
communicate with each other so that the web cluster 
system gives an illusion of a single system. This 
cluster communication mechanism is what controls 
the web cluster system.  
 The web cluster system proposed by Aron et al. 
establishes a permanent TCP control connection 
among all of the nodes during the initialization state 
[14]. Through this TCP control connection, the nodes 
of the web cluster system can pass along control 
packets to each other. The web server system based on 
HTTP/1.0 protocol usually needs to exchange 9 TCP 
packets between the server and the client in order to 
process a request. However, when the server that 
initially establishes a TCP connection with the client is 
different from the server that will serve the client, the 
web cluster system has to exchange at least 12 
additional packets in order to serve the request [14]. 
This additional overhead can not be ignored. 
Furthermore, due to technological advances in 
network infrastructure, the rate of packet loss is 
extremely low in current Local Area Networks (LAN). 
Thus, using a TCP protocol that has extensive code to 
support reliable connections may be wasting 
resources. 
 In this respect, we analyze the performance 
degradation suffered from packet loss or faults for a 

web cluster system implemented on the IP layer when 
deployed on current LAN infrastructure. To do so, we 
design and implement a Light-weight Cluster Control 
Protocol (LCCP) on the IP layer. Our experimental 
analysis shows that an IP layer implementation to 
support web cluster systems is indeed feasible and 
efficient. 
 Figure 3 depicts the web cluster control packet 
using LCCP. This packet does not include the 
transport layer protocol header such as the TCP header. 
The header of the LCCP packet consists of only 
essential information required for control of a web 
cluster system. The details of the LCCP header are as 
follows. 
  
Receptor (32 bits): This field indicates which 
component of the web cluster system has to process 
the current LCCP packet received from the IP layer. 
Command (32 bits): Through this field, the 
component is able to identify what kind of mission has 
to be fulfilled when the component receives the LCCP 
packet. This field includes many kinds of tasks, for 
instance, the initialization of each component, the 
request or reply between the distributor and the 
dispatcher, the request or reply related to the TCP 
handoff mechanism, and so on.  
Data (32 bits): This field includes the data indicated 
by the 'Command' field. The value of this field will 
vary according to the value of the 'Command' field. 
Socket ID (96 bits): This field consists of four 
different subfields; the client's IP address, the client's 
port number, the server's IP address, and the server's 
port number. When the current node is not the server 
node that initially establishes the TCP connection with 
the client, the current node can obtain the initial TCP 
connection by exploiting these fields. 
Handoff Information (90 bytes): When the server 
that establishes the initial TCP connection with the 
client is different from the server that actually 
provides service to the client, the distributor has to 

 Fig.3: LCCP packet header 
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pass along the TCP connection information from one 
server to another. In this case, the distributor creates 
the LCCP packet whose 'Handoff Information' field 
contains the TCP connection information needed to 
support the TCP handoff mechanism. 
 
 
4  Implementation in Linux 
We implemented the web cluster system mentioned in 
the previous section in Linux 2.4.20. In this section, 
we briefly describe the implementation of LCCP.  
 Figure 4 shows the position of the LCCP protocol 
and their functions within the Linux network stack. 
The left side of this figure involves functions 
processed when the control packet arrives at the LCCP 
layer; the right side functions are executed when 
sending the LCCP packet. Due to the paper length 
limitation, we omit the details of each of these 
functions and only briefly mention the roles of these 
functions. 
 In Figure 4, lccp_rcv() and lccp_xmit() are both 
interface functions for receiving and sending the 
LCCP packet, respectively. Both sys_cluster_ 
init() in the sending part and initialize_ 

handler() in the receiving part initialize components 
of the web cluster system. The function 
lccp_forward() in the IP layer forwards the LCCP 
packet. In the distributor, sock_def_disp_request() 
and disp_sendmsg() are in charge of creating and 
sending LCCP query packets to the dispatcher, 
respectively, and dispatch_handler() processes the 
reply packet for the query. The handoff_sendmsg() 
and handoff_handler() functions execute the TCP 
handoff mechanism in the distributor. In the 
dispatcher, the function dispatch_handler() 
executes the layer-7 content-aware load distribution 
algorithm.  

 
5  Performance Evaluation 
In this section, we first explain the experimental setup 
used to measure the performance of the web cluster 
system. We then describe the performance of the 
LCCP web cluster system from the viewpoint of 
stability and scalability.  
 
 
5.1 Experimental Setup 
Table 1 describes the specification of the node systems 
constituting the LCCP web cluster system and the 
client systems generating web requests in our 
experiments. Each of the 14 server nodes and 
dispatcher has an Intel Pentium II 350MHz CPU and 
64MB RAM. In order to easily saturate the capacity of 
the web cluster system, 7 client systems with higher 
performance than the others are used in the 
experiments. All clients have 256MB RAM. Of these, 
4 systems, 2 systems, and 1 system, respectively, use 
an Intel Pentium IV 2.4GHz CPU, an Intel Pentium III 
750MHz CPU, and an Intel Pentium IV 1.7GHz CPU. 
All of these systems have a 3COM 100Mbps Ethernet 
Card (3c59x-TX-M) and are connected to each other 
through the NETGEAR Gigabit switching HUB with 
CAT 5 STP LAN cables.  
 The Apache web server is adopted as the web 
server application operating on each server nodes [15]. 
In order to generate synthetic HTTP/1.0 web requests, 
each client executes the SURGE program [16]. The 
workload created by SURGE consists of 10,000 data 
files of which the total size is 187MB and the average 
size is 19KB. The minimum generated file size is 74 
bytes and the maximum size is about 1.4MB. In this 
workload, the patterns that clients request to a server 
follow the Zipf-like distribution and the most popular 
file among the 10,000 files is requested 100,000 times 
when the client request made to the server is 490,000 
times [17]. For the purpose of flooding the server with 
requests, the SURGE program is modified to send a 
HTTP request as soon as the reply for the previous 
request is received. 
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5.2 Results 
Since our intension is to estimate the stability and 
scalability of the LCCP protocol, we simply adopt the 
round-robin dispatching algorithm as this is one of the 
simplest algorithms used for load distribution. In the 
following experiments, we do not use a layer-4 switch 
as we assume that a layer-4 switch is in front of the 
web cluster system. However, it is not important 
whether a layer-4 switch is included or not because the 
layer-4 switch plays a simple role of relaying packets 
from clients to servers or vice versa. 
 
5.2.1 Stability 
Prior to describing the scalability of the LCCP web 
cluster system, we present the stability for our LCCP 
protocol implementation. To do this, we compare the 
LCCP web cluster system with an unmodified server 
system. In this experiment, the LCCP web cluster 
system is composed of only one server node that 
internally executes the TCP handoff mechanism all the 
time. The client floods HTTP requests to each of these 
two different web server systems, increasing the 
number of its SURGE threads from 10 to 200 in 
increments of 10. The number is limited to 200 threads 
as we found that one SURGE process executing 200 
threads fully saturates a single web server node. In 
order to obtain a stable result, the experiments are 
conducted for 30 seconds of which the result data are 
gathered from the middle 20 seconds. This evaluation 
is repeated 10 times. Of these, we throw away the 
minimum and maximum values and obtain the average. 
Figure 5 shows these numbers. 
 Figure 5 represents the number of TCP connections 
serviced per second as the number of SURGE threads 

increases by 10. From this figure, we observe that the 
LCCP web cluster system performs comparably to the 
unmodified Linux kernel. In the LCCP web cluster 
system, the server node has to communicate with the 
dispatcher and internally execute the TCP handoff 
mechanism. Although the LCCP web cluster system 
needs to process additional operations in order to serve 
a web request, its performance is similar to the 
unmodified web server system performance. From this 
result, we can verify that the LCCP web cluster system 
which consists of only one server node stably operates 
in a LAN environment even if the LCCP protocol does 
not support any reliability mechanism for packet loss 
or error. 
 
5.2.2 Scalability 
Important performance metrics for the web cluster 
systems are scalability and capability, both measured 
by the number of TCP connections processed per 
second. In another experiment, we measured these two 
metrics, by adding a server node to the LCCP web 
cluster system one by one to upto 14 nodes. Each 
server node receives HTTP/1.0 requests generated by 
a SURGE process having 200 threads, so that the 
LCCP web cluster system is fully overloaded by these 
HTTP requests. The procedure for obtaining the result 
data in this experiment is the same as that described in 
Subsection 5.2.1. One client system can stably execute 
2 SURGE processes with 200 threads, and each 
SURGE process can fully saturate one web server 
node. Considering this limitation and the 24 port 
switching hub that we have, the maximum number of 
server nodes, dispatcher, and client systems that can 
be experimented with is 15, 1, and 8, respectively. Due 
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to the number of systems that is available to us, we 
conduct this scalability experiment using 14 server 
nodes, 1 dispatcher, and 7 client systems. We compare 
the LCCP web cluster performance with the simplest 
version of the web cluster system, which does not 
support any load balancing mechanism. This system 
consists of server systems that have an unmodified 
Linux kernel, and each of these server systems are 
directly connected to each other through the switching 
hub. This system can directly service any client HTTP 
request without requiring any internal communication 
with other system components. Hence, this system 
will result in the best layer-7 web cluster system 
performance. Therefore, we will call this an ideal 
system in this experiment. 
 Figure 6 depicts the results that compare the LCCP 
web cluster system performance with the ideal system 
performance. The performance of the ideal system as 
well as the LCCP web cluster system increases 
linearly as the server node increases. Not only is the 
system scalable, but we observe that the number of 
TCP connections per second processed on the LCCP 
web cluster system is as high as that of the ideal 
system.  
 The implication of these experimental results is 
that the LCCP web cluster system can stably serve 
overloaded web requests even though the LCCP 
protocol does not support any reliability mechanism 
for packet loss and/or error. 
 
 
6  Conclusions 
To identify the effect on the system performance when 
a web cluster system is implemented on the IP layer, 
we designed and implemented the LCCP web cluster 
system on the IP layer in Linux.  
 Experimental results show that the LCCP web 
cluster system is scalable and that performance is as 
high as that of an ideal system. Considering the current 
advanced network infrastructure and our experimental 
results, we conclude that although the web cluster 
control protocol implemented on the IP layer does not 
support any reliable mechanism, the problem related 
to packet loss and/or error has little effect on the 
system performance. 
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