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Abstract: The text of the abstract follows. In this paper we describe a numerical approach to completely determine
the structure of a low Reynolds number compressible jet flow and to compute the associated sound waves in the
far field. The method is applied to simulate a Reynolds number 4, 000, Mach number 0.8 jet, with the results
validated by comparison with the jet reproduced experimentally. The mean flow and far field sound results are
shown to while matching conditions are created experimentally inside a low pressure tank. The mean flow results
of the DNS are seen to correspond well with our experimental results, and to be compatible with those published
in the literature. The semi-analytically obtained sound field is shown to be identical to that obtained purely by
the DNS in the near field, while in the far field matches those obtained by us experimentally, and compatible with

experimental results previously published.

1 Introduction

Noise prediction has been studied actively since the
early 1950’s, coinciding with the development of the
modern aviation industry and the theoretical basic for
flow produced sound provided by Lighthill’s Acoustic
Analog [7]. Lighthill’s theory follows from the obser-
vation that the generation and propagation of sound
is governed by the Navier-Stokes equations. Simply
put, Lighthill rearranged the Navier Stokes equations
of fluid flow to the following form:
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where p’ is the acoustic density perturbation, co, the
ambient speed of sound and T, the so-called Lighthill
stress tensor. This stress tensor is given by
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where p is the fluids density, u; the fluids velocity,
i the dynamic viscosity of the fluid, p’ the acous-
tic pressure fluctuation and ¢;; the Kronecker delta
function. Through the rearrangement of terms in the
Navier-Stokes equations, Lighthill identifies the pos-
sible mechanisms of wave propagation (left hand side
of equation (1)) and wave creation with the observa-
tion that the right hand side is a perturbation from rest
state must represent a source term at least when the
perturbation is small. Early noise studies focused on
deriving empirical relationships (such as Lighthill’s

eighth power law which states that the acoustic power
radiated by a jet is proportional to the eighth power of
the jet speed), using various assumptions to reduce the
complexity of the relations studied.

Since this period, the rise of computers has also
made possible more sophisticated predictions through
solution of the Navier-Stokes equations, albeit with
certain simplifying assumptions. Even today with
modern computing power, complete solutions of the
Navier-Stokes equations are not possible at interesting
Reynolds numbers ( 10%) or complicated flow geome-
tries, and will not be even for many years to come.
However through the use of Direct Numerical Sim-
ulation (DNS) it is possible to simulate flows with
Reynold’s numbers ( 10%). While such flows are not
found in industrial appl ications, many feature resem-
ble those of the higher Reynold’s number flows. In
particular, noise creation mechanisms are believed to
be similar in both cases [6], and studying accurately
low Reynolds number flows can lead to implications
for models of the sound source at higher Reynold’s
numbers.

In this paper we will use the DNS method devel-
oped by [2] to obtain the complete flow and acoustic
field of a Reynold’s number 4, 000, Mach number 0.8
jet for the source region. Through the use of a contin-
uation method (of which Lighthill’s Acoustic Anal-
ogy is one) we extend the acoustic field to arbitrary
locations in the far field. Simultaneously we have
constructed an experimental setup that reproduces the
jets low Reynold’s number, high (but subsonic) Mach
number inside the lab, and take simultaneous mea-
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surements of jet flow and acoustic properties. The
results of the experiment are used for validation of
the numerical results. It is envisaged that complete
DNS data will allow in the future a detailed look at
the sound creation mechanisms inside turbulent flow.

2 Geometry, governing equations
and numerical procedure

In this section we discuss the numerical method used
to solve the Navier-Stokes equations. This method
was developed to be able to solve fully compressible
and turbulent flows, so long as no strong shocks are
present . The intended application in this study is to
model a high speed (but subsonic) flow with a low (but
turbulent) Reynolds number. Such flows are not in
general of practical interest, where in the real world,
noise creating jets (such as the jet engine of an air-
plane) have a much higher Reynolds number. Nev-
ertheless many similarities of the jet properties exist
between our chosen case and real world jets, and our
chosen jet has the decidedly useful advantage of being
fully numerically solvable. To model a jet specifically,
the boundary conditions are formulated explicitly for
this case while the discretization for the interior of the
domain remains applicable to more general flows. In
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Figure 1: A sketch of the the geometry

figure 1 we show a sketch of the jet geometry. Air
is flowing through a cylindrical nozzle with diame-
ter D and velocity U. Downstream of the nozzle the
air flow becomes turbulent and the jet spreading be-
comes linear. The particular case to be studied is a
Reynolds number 4, 000, Mach number 0.8 flow. At
this Mach number, compressibility effects become im-
portant. The flow is thus governed by the compress-
ible equations for conservation of mass, momentum
and energy, see for instance [5]. The equation for con-

servation of mass reads:

op 0
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In which p is the fluids density and u; the velocity
vector. The equation for conservation of momentum
reads:
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In which p is the pressure and 7;; the viscous stress
tensor. Here we will consider Newtonian flows only
and the components of the stress tensor can be written

as:
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Where p is the dynamic viscosity of the fluid. Which
is in the present study assumed to be constant. The
governing equation for the total energy E which is the
sum of the internal energy pC),T and the kinetic en-
ergy pu;u;/2 reads:
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In which E = pC,T + pu;u;/2 is the total energy, x
the thermal diffusion coefficient. The thermodynamic
quantities P, p and T are related to each other by the
equation of state for an ideal gas

P = pRT

where R is the gas constant. The speed of sound is

defined as:
9 <8P>
cc=1——1 .
op)g

For an ideal gas it follows that ¢ = /vR1 where ~
is the specific heat ratio. For an ideal gas the speed of
sound is thus only a function of the temperature and
of the composition of the gas and independent of the
density and pressure!

All the variables in the equations given above
are made non-dimensional using the ambient speed of
sound ¢, as reference velocity scale, the ambient den-
sity poo as reference density, pooc2, as reference pres-
sure, c2 /C,, as reference temperature, and ambient
values for the chemical species. The resulting impor-
tant non-dimensional numbers are the Reynolds, and
Mach number.

Re = LX’COOD
I
Ma =

Coo
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The Reynolds number given above is a direct result
of the non-dimensionalization and is not a very useful
number because it is based on the constant acoustic
speed c. In the remaining part of this paper we will
use the following definition for the Reynolds number

_ poocooD . Ma = pOOUD

I I

The numerical method we use is similar to the one
used by us before [2]. A staggered formulation has
been used. The scalar quantities are stored at the cell
centers and the velocity components are stored at the
cell faces. All the derivatives are calculated with the
following compact finite difference formulation

a(fiy + i)+ fi=
e (fivryo — fic1y2) + a5 (firas2 — fimapa) +

Re

e (fivsjo — fis2) + a5 (fixrs2 — fimrj2) (6)

In which f] is derivative of f with respect to X in
point 4 and AX is the grid spacing. The coefficients
in the equation above are obtained by Taylor expan-
sions around grid point ¢. With the five coefficients
a, b, c,d and e in equation (6) we can obtain an 10th
order accurate formulation. The values for a, b, c,d
and e for this 10th order scheme are (obtained with
the Maple Software package):

a =49/190, b= 12985/14592, ¢ = 78841/364800

d = —343/72960, e = 129/851200

For the interpolation between various grid locations
we use the following formula

fit+a(fix1 + fim1) = b(fiy1y2 + ficay2) +
c(fizy2 + fizzre) +d(fizssa + fiosp2) +
e(fixr2 + fizr/2) (N

In the interior we require again 10th order accuracy
resulting in the following values for the coefficients
a,b,c,d and e (again obtained with the Maple Soft-
ware package):

a=T7/18,b=1225/1536,c = 49/512,
d = —7/1536,¢ = 1/4608

Both formulations are 10th order accurate in space.
Close to the boundaries of the domain the order of the
scheme has to be reduced. The exact procedure for
this is given in [2].

The time integration of the governing equations
has been performed with a standard fourth order
Runga-Kutta method, with a fixed time step At =
Co0/100. The Courant number used in the simulations
is approximately 0.7.

2.1 Boundary conditions

The formulation of boundary conditions for aeroa-
coustic calculations are extremely important. At the
in and outflow boundary of the computational domain
we add in a small layer an artificial convection ve-
locity U to the equations (3, 4, 5). Here we demon-
strate this procedure for the equation of conservation
of mass(3).

dp 0 ou

6t+8g:(u+U)’0_’06x_0 (8)
where U is the artificial convection velocity. In a very
small region close to the in and outflow U is set to a
value U > c and smoothly reduced to zero in the inte-
rior of the domain. With this modification the flow is
locally supersonic. This means that at the inflow we
can specify velocity, density and total energy as ex-
plicit boundary conditions. At the outflow no condi-
tions have to be imposed, due to the local supersonic
nature of the equations. As mentioned before in the
interior of the computational domain the artificial con-
vection velocity is zero.

In addition to artificial convection, we imple-
ment anechoic boundary conditions. Standard bound-
ary conditions for compressible flow, see for instance
Thompson [13] and Poinsot & Lele [10] will always
generate some small reflections. These reflections will
have no significant influence on the flow field, but will
in general have a quite large influence on the acoustic
field, which has by definition a very small amplitude.
To implement anechoic conditions, in a layer sur-
rounding the computational domain additional terms
are added to equations (3, 4 5) to damp reflections by
forcing all the flow variables to their reference states
through this layer. Because the lateral boundaries are
positioned far away this should not effect the physi-
cally interesting region of the flow. Wehn applied to
the the conservation of mass equation (3) for example,
this takes the form

—A(z,y,2)(p — ptarget) ©)]

where p is the regular density as appearing in all the
equation A(x,y, z) is a function which is zero in the
in the interior of the computational domain and has
small positive values in the damping layer. piqrger 18
the time averaged (running average) density obtained
from the simulations.

3 Acoustic field continuation

The Ffowcs Williams and Hawkings formulation [15]
gives the general result for a sound field radiated by
turbulence in the presence of arbitrarily moving sur-
faces. As pointed out in the original paper [15], and
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later by Francescantonio [3] the results can be ap-
plied to jet flow by using stationary virtual surfaces.
One of the interesting features of this theory is that
there are no assumptions made about the nature of
the sound source, as opposed to solutions based on
Lighthill’s acoustic analogy [7]. In addition, storage
requirements remain tractable when the the source is
not acoustically compact. as

P (1[5 8

+ é% Js [%]ret ds + J [%]ret dS) (19)

where s is some surface surrounding the flow, u; and
u, are flow velocities, p is density, p is pressure, 7 is
distance from integration point to observer, “ret” de-
notes evaluation at the retarded time ¢/ = ¢ — CL,
and the subscript 0 represents the mean value of the
given quantity. Details of the derivation can be found
in [3] and [15]. This integrated form of the equation
is obtained using a free space Green function which is
almost the only simplification that removes full gener-
ality. Because of this, integral surfaces can be placed
close to turbulent and/or shear regions provided the
nonlinearities there are not too strong.

4 Results

A jet of Reynolds number of 4, 000 (based on jet in-
flow diameter and velocity) and a Mach number of 0.8
(based on jet inflow velocity and co) was simulated
using the method described above. Following Uzun et
al [14], the jet inflow profile is specified as

Un(r) = 22 [1 — tanh <Br — TO)} (11)

2 To

where B = 7.5 is related to the inverse of the initial
momentum thickness. No disturbance seeding is done
to induce the turbulence, the turbulence was left to de-
velop from Kelvin-Helmholtz instabilities. The com-
putations were performed on a non-uniform Cartesian
grid consisting of 2003 points. The code has been
made parallel through the use of the Message Passing
Interface (MPI) library. Calculations have been per-
formed on an AMD-Opteron system with 8 CPUs and
the simulation required approximately 1 month run-
ning time. For the acoustic post-processing, the 2-D
Simpsons rule (third order) is used for the integration
while time derivatives are calculated using a five point
difference method (third order accuracy). To include
retarded time effects it was required to first complete
the DNS and about 30 gigabytes of data was stored for
post-operation.

4.1 Experimental setup

Compressible DNS can only be performed for flows
with rather low Reynolds number and high Mach
number. To experimentally create a low Reynolds
number, high Mach number flow for comparison pur-
poses, we reduce the ambient pressure inside a large
steel chamber to a fraction of atmospheric pressure
(38 mbars) .through the use of a vacuum pump. The
flow into the chamber was controlled by a massflow
controller at the inlet and a (controllable) vacuum
pump at the outlet of the pressure chamber, and pro-
ceeded vertically into the chamber through an 8mm
jet nozzle positioned in the chamber floor. Semi-
anechoic conditions inside the chamber are created by
padding the walls with acoustic dampening material.

Acoustic data is collected from microphones po-
sitions on a padded metal arc centered above and
pointing towards the jet nozzle. The arc holds 16
microphones at 42 jet diameters from the jet nozzle,
equally spaced at angles from 10° to 85° from the
jet axis. Data acquisition is performed by two PCI
4472 measurement cards, each capable of simultane-
ously sampling 8 channels at 100 kHz. A sampling
frequency of 65536 Hz was used.

4.2 The directly simulated flow

Figure 2: A 3-D isocontour of the vorticity, with red
indicating positive vorticity, and blue indicating neg-
ative voriticity. 3 vertical slices and 1 horizontal slice
of acoustic pressure are also shown.

In this section we give results for the jet obtained
numerically and experimentally, and compare with
previously published results. In figure 2 we repre-
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sent the simulated jet through a contour of vorticity.
This picture Just downstream of the nozzle (middle
left in the figure) the flow is laminar. A short dis-
tance downstream of the jet nozzle there is a transi-
tional region and further downstream the jet becomes
fully turbulent and the spreading rate is linear as could
be expected from standard turbulence theory. Figure 3

x/D

Figure 3: Centerline velocity profiles. Circles are ex-
perimental data of Stromberg for Re 3600, Ma 0.83
jet, crosses is our experimental data, full line is our
DNS, dash-dotted line is fit of equation (12), and bro-
ken line is from DNS of Freund for Re 3600, Ma 0.83
jet.

compares the centerline velocity of our DNS with our
experimentally obtained results using a Pitot tube, and
with published experimental [11] and numerical [6]
results of a Reynolds number 3,600, Mach number
0.8 jet. To obtain figure 3 each jet was shifted until the
end of the respective potential core aligned visually
with that of the data from Stromberg [11], accounting
for differing virtual jet origins. The agreement is very
good. The main differences between our experimental
data and our DNS can be accounted for by the unreli-
ability of the Pitot tube which ignores the possibility
of back flow in low speed regions and the radial mo-
tion of the jet near the end of the potential core. Im-
portantly both the DNS and experimental data match
reasonably downstream, an indication that the turbu-
lence is accurately being simulated. The decay rates
are found by fitting the expected downstream decay
profile (12) to each result were B,, of 5.37 and 5.22
for the DNS and for the experimental jet. This is con-
sistent with an expectation of between 5.0 and 5.9 [1]

= 12)

4.3 The acoustic field

To verify that the FWH predictions are consistent with
the aeroacoustic field only by DNS we match acoustic
pressure signals in an overlap region where both re-
sults are available. For example, figure 4 gives these
signals at the pointz = 24.2D;,y = 15.96D;, 2 = 0.
The signals are almost identical, with a small depar-
ture due to grid stretching between the integral con-
tour and chosen comparison point. Next the sound

Figure 4: Section of pressure signal at x = 24.2D,
y = 15.96D;. Full line is directly from DNS, dashed
line from FWH formulation.

pressure levels and directivity are compared for our
DNS and experimental data again with two jets of
Freund [6] and Stromberg [11] in figure 5. Here the

90°

Figure 5: Far field sound pressure levels. Circles are
Stromberg’s data at r = 30.0D; for Re 3600, Ma 0.83
jet. Full line is DNS at » = 30.0D;, crosses is our
experimental data at » = 30.0D; (scaled back from
r = 42.0D;) and broken line is DNS at r = 120.0D;.

agreement at the radius of 30D); is quite good. The
jets of Freund and Stromberg are taken at the slightly
higher Mach number of 0.83, which accounts for the
1-2 dB difference in the sound pressure levels while
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the difference in Reynolds number is not expected to
significantly effect the SPL. The experimental results
match well for intermediate angles, but departure at
low angles is believed to be caused by reflections in-
side the tank. Incidentally, the SPL at the radius of
30D; of our DNS data is only shown from an angle of
35° onwards due to limitations imposed by the inte-
gral contour boundary. No problem exists at a radius
of 120D, and the expected dropping of SPL at angles
close to 0° is seen nicely on that curve.

5 Conclusion

A numerical procedure to obtain the complete turbu-
lent flow and sound fields has been outlined and ap-
plied to the case of a turbulent jet. The numerical
procedure consists of a direct numerical simulation
(DNS) code, which solves the Navier-Stokes equa-
tions using a high order compact finite difference for-
mulation. For boundary conditions, an artificial con-
vection velocity is added to ensure local supersonic
conditions, and artificial damping terms are added to
create anechoic conditions. Secondly, to compute far-
field sound, we usethe Ffowcs Williams and Hawk-
ings method which computes the sound pressure field
at arbitrary locations based on knowledge acquired by
the DNS of the flow history in the turbulent region. Fi-
nally we recreated the same conditions experimentally
in the lab for verification purposes. The method was
applied to simulate a Reynolds number 4, 000, Mach
number 0.8 jet and the results compared to our exper-
imental data as well as , previously published exper-
imental and numerical results of a Reynolds number
3,600, Mach number 0.83 jet. The centerline velocity
profiles and sound pressure levels of our simulation
were consistent with these results. It is hoped that the
combination of a complete jet simulation and simulta-
neous experimental measurements of the flow and and
acoustics of the same phenomena will allow us to in-
vestigate more deeply the underlying mechanisms by
which noise is created in turbulent flows.
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