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Abstract: With regard to a body composed of a linear thermo-piezoelectric medium, referred to a natural configu-
ration, we consider processes for it constituted by small displacements, thermal deviations and small electric fields
superposed to the natural state. We show that any discontinuity surface ofrordérfor the above processes is
characteristic for the linear thermo-piezoelectric partial differential equations. We show that discontinuity surfaces
of order 0 generally are not characteristic, hence the conditions are written which characterize the discontinuity
surfaces of ordef that are characteristic.
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1

We consider a solid body8 which is composed of

a linear thermo-piezoelectric medium, that is, a non-
magnetizable linearly elastic dielectric medium that is
heat conducting and not electric conducting.

We assume thaf3 has a natural configuration,
say a placemenk|[B] that B can occupy with zero
stress, uniform temperatur&, and uniform electric
field. Such natural configuration will be used as refe-
rence.

We consider processes #f constituted by small
displacements, thermal deviations and small electric
fields

Introduction Hence strong waves of order= 1 and all weak
waves of any given order > 2 have the same propa-
gation conditions.

Such results generalize to piezoelectric heat-
conducting bodies the results of [3] that hold for not

heat-conducting piezoelectric bodies.

2 Linear thermo-piezoelectricity

2.1 Constitutive equations

We assume that the bod§ occupies the region
B = x[B], which is the closure of a regular, open and
connected subset of the three-dimensional Euclidean
space. A unique system of coordinates, xs, x3)
for both the reference configuration and the ambient
space will be used, so that the notations of [1], [2] can
be adopted by unifying the symbolism used there for
the material and spatial descriptions.

Hence, the following terminology is adopted
here.
o t mechanical Cauchy stress tensor

(u, T, E)

superposed to:[B]; we adopt the linearized theory
for thermo-piezoelectricity which is developed in [1],
[2]; such a general framing contains many particular
theories; for example, the theory in [3] is a particular
case of it.

A smooth singular surface (or discontinuity sur-
face) of orderr in the triple of fields(u, T, E) is _
referred to as a weak (thermo-piezoelectric) wave if © E €lectric vector
r > 2 and a strong (thermo-piezoelectric) wave if o ¢ electrostatic potential
r=20or1.

Here we show that() any singular surface of
order r > 1 is characteristic (for the linear thermo-

o T incremental absolute temperature
o D electric displacement vector.

piezoelectric partial differential equations); moreover,
(i) singular surfaces of orded generally fail to be
characteristic.

The linear constitutive equations are specified in terms
of the constitutive quantities listed below.
orj = elastic moduli
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e;x = piezoelectric moduli Instead in the inhomogeneous case the linearized field
Gr; = thermal stress moduli eqguations write as
rf, = dielectric susceptibility
@, = pyroelectric polarizability OKlij Wi jl T Oklij, k Wi j + €iji @ ;i + €iji,j @ ; +
€ = permittivity moduli BT g = B, T = poliiy — f) (15)
ki = Fourier coefficients Criitls o — € G g+ G T = (16)
~ = heat capacity kji Uik Ckj Poghk T Wk Lk T e
n, = entropy at the natural state —tip; T gk + K +
T, = absolute temperature at the natural state . ; -
° P +10 Brjiy, j + poyT — Towk ¢ = poh.  (17)

po = Mmass-density at the natural state

We_assume the following constitutive equations yye e that in both cases the field equations can be
respectively for the Cauchy stress, electric displace- put in the form
ment vector, heat flux vector and specific entropy:

tki = Okiij U; j — ikl E;, — BuT QD) Oklij Ui, jk + eiji d),z‘j — Pollyy = X — pofl (18)
Dy = Ckij Ui, j + e, B + 0, T 2) CLjilj ik — €kj¢,jk =34+ ¢e (19)
Po01) — a1 = poh  (3) —ripi Tk + K530 i+ ToPrjin, j —
g = kT + B (4) ~To @by = S5+ poh (20)
o 1 -
n=mn + fOT + o (Biju;, j + @ Ei)  (5) where ¥; through X5 represent sums of external
_ , sources with terms involving only first derivatives of
whereE; = —¢ ; and the following symmetries hold: e dependent variables and of the material functions.
Oklij = Oijkl = Olkij = Oklji (6)
g = Chyio Py =i () 3 Characteristic hypersurfaces of
TR = Rk Be = Bl ® the linear thermo-piezoelectric
2.2 Balance laws equations
The field equations corresponding to tfig balance Consider a linear differential operator, in Schwartz
law of linear momentum,(ii) Maxwell’'s equation, notation,
and (ii7) balance law of conservation of energy, write
as L(y, D)u = Y Aua(y)D%u, (21)
thi,k + po(fy — @) =0 ) ol=m
Dy x = e (10) where
P01 — Grx = poh (11) , )
where y = (21, x2, 23, t) € R*, u: R* — R, u = u(y),
o f; isthe body force density and
o g, isthe free (or prescribed) body charge density
o h isthe heat source per unit mass. DY — ol
0z 0x52 0x3 ot’
2.3 Field equations a = (ay, ag, as, o), |o| = a1 + as + ag + au,

The linearized field equations, which are obtained
by replacing the constitutive equations in the balance
laws and neglecting the higher order terms, in the ho-
mogeneous case write as

the o; being non-negative integers.

The same formula describes the generéh-
order system ofV differential equations iV unkno-
wns if we interpretu as column vector withV com-

Oklij, i T €ijt @ i — B T ) = po(ly — f;) (12) ponents and thel, asN x N square matrices.
€hji i i — €k Dk + O T p = g (13) A characteristic manifolaf the linear differential
E equation (21) is a surface ifR* which is exceptional
kj =3 ik "3 for the assignment of data in the appropriate Cauchy

+To Brjine,; + poyT — To@r b = poh (14) initial value problem.
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More in detail, the (generalize@auchy Problem 3.1 Characteristic equation of the thermo-
consists of finding a solution of piezoelectric field equations

L(y, D)u = Z An(y) D% =0 (22) Now let we identify the system of equations (22)
with the linear thermo-piezoelectric equations (brie-
_ _ fly, L.t.p.e.) (12)-(14), or (15)-(17) in the inhomoge-
having prescribe@auchy datan a hypersurfacd C neous case. thus we have — 2. N — 5. and the
4 . _ 1 ) )
IR" given by¥(y) = 0, where one assumes thahas characteristic equation (28) becomes the vanishing of

m continuous derivatives and the surface is regular in {ha determinant of the coefficients of the system of
the sense that five equations

laj<m

DV = (\I/$17 \Il$27 \Il$37 \I/t) 7é 0. (Uklijnjnk - pOVQCSli))\i + eiljninjgo =0 (29)
The Cauchy dateaon 5 for anmth-order equation exining \j — €gine = 0 (30)
consist of the derivatives aof of order less than or . TV Bima s +
equaln — 1. They cannot be given arbitrarily but have Fhj Tk T 20V Pigitj i
to satisfy the compatibility conditions valid o$\ for +(mﬁnjnk — Tong V) =0 (31)
all functions regular nea$' (instead normal derivati-
ves of order less tham can be given independently  in the five scalar unknowns, \;, ¢.

from each other). Now, putting
We call S noncharacteristicif we can get all
D%y for |a] = m on S from the linear algebraic sy- Al = oggigngng — poV?268,, B = €ilNin;
stem of equations consisting of the compatibility con- D = nyeynj, E = —ngryn;, (32)
ditions for the data and the partial differential equation 5 -
(or system of equations) (22) taken 8n =TV Bing, G = kjnjng — TongwrV
We call S characteristicif at each pointy € S i i
the surfaces is not noncharacteristic. thes x5 system (29)-(31) in the variablésr, Ai, ¢)

The principal partL®") of L is defined as the ~ Writes as
operator consisting of the highest order termd.of

Ap i+ Bip=0 (33)
L) = N A,D™. (23) Bi\i—Dp=0 (34)
laj=m EtT+FXN+Gp=0. (35)
It can be expressed in matrix form by putting
By the substitution

AE) = Y A€, ceR'. (24) .

|a|=m o = DB\ (36)

If (21) represents amth-order system ol diffe-
rential equations iV unknowns, hence is a column
vector with N components and thd, are N x N

the system (33) becomes

—1 .
square matrices, then a surfade of equation¥ = (Aui + Blf) Bi)Ai =0 (37)
U(xy, z2, 3, t) is characteristic for (21) if D™ BiAi—p=0 (38)
Er+ (F;+GD™'B)\i =0 (39)
det [ A(V®)] = 0. (25)
If the surfaceS has equation T oA A A
0 Hn Hip Hiz O
(1, 2, v3,1) =0, (26) 0 Hy Hy Hy 0
then putting whose matrixMis | 0 Hs; Hsy Hss 0
o oT 0 Ly Ly Ly -1
ng= Vo[l = V=—vyl_—  (27) E My My Mz 0
ox; ot where
equation (25) becomes L o
° Hij = Aij + D~ BiBj (’L, 7 =12 3)
det [A(nl, ng, N3, —V)} =0. (28)

e Ly =D'B; (i,=1,2,3)
This is calledcharacteristic equationf the system of
partial differential equation (22). e M; = F,+GD'B; (i,=1,2,3).



Hence, the characteristic equation for the l.t.p.e.s is
detM = E x det[Hij] =0 (40)

Since E # 0, such characteristic equation coincides
with the characteristic equation for the partial diffe-

rential equations of a not heat conducting piezoelec-

tric medium - cf. [3].

In the latter case the characteristic equation redu-

ces to the vanishing of the determinant of the coeffi-
cients of the system of four equations

(41)
(42)

2
(Ortinjng — poV=61)Ni + eqning o =0
CjiMiMg \j — €Tk P = 0

in the four scalar unknowns,;, ¢ — cf. [3]. That is,

det[Hy;] = 0 (43)

4 Compatibility  conditions  for

jumps of partial derivatives

In this section we follow the treatment of the subject
given in [5]. Let E3 denote the three-dimensional
Euclidean ambient spacé,= [t,, t1] a time interval
and & = I x E3. We consider a smooth hypersurface
S in £ which admits a suitably regular representation
Ty = %(ty 517 g?)a

1=1, 2,3, (44)

with the parameter pair belonging to an open subset

of IR?. For any value oft equation (44) defines a
surfaceS; in E3, referred to the curvilinear coordi-
nates&;, &. The totality of surfacesS; for t € I is
a moving surface inE3. Thus S can be interpreted
as both the hypersurface ¢f of equations (44) and
the associated moving surface K.

The comma notatiory , is used to denote cova-
riant derivative in the¢ coordinate system. For all
t € I, at each point ofS;, there is a unit normah
whosexz components are denoted ly.

The ¢ components of the metric tensor o are
denoted by

9aB = Vi, a¥i, 8 - (45)

ThespeedV of the surfaceS at timet hasx com-
ponents

i
i = — 46
Vi ot (46)
and thespeedf S in direction of n is
V= Vl n; . (47)

Now let f : N — IR be a real scalar-valued
function and let\ = I x N with N open subset of
E3 having, for allt € I, non-empty intersection with
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S;. Since the results below refer only to the part®f
contained in\/, we replaceSNN by S and S;nN
by S;. Let 0f/0n denote the derivative of in the
direction of n on S;, wheren is distance measured
from S;. Henced/on = n; 0/0x;.

If the hypersurfaceS, with representation (44),
is singular in& of order 0 for the real scalar-valued
function f = f(z1, x2, x3, t), then thecompatibility
conditionsbelow hold for discontinuities in the first
partial derivatives off acrossS

of

[ai;fa] = ggT[f]ﬁo%,T - [%} ne,  (48)
9 5 9

D= -v ] e
where 50 5
5t~ ot on

denotes thé —time derivative of Thomas.

If S is a singular hypersurface ié of order 1
for the continuous functionf = f(z1, 2, x3, t),
then the following compatibility conditions (Hada-
mard [6] , pp.103-104)

of of of of

el = Gl e (5] =V 5]
hold for the discontinuities in the first partial derivati-
ves of f acrosss.

If S is a singular hypersurface i& of order
r > 2 for the function f = f(x1, z2, x3, t), then
the compatibility conditions (Hadamard [6] , pp.103-
104)

(50)

o f _ s [0"7
[8xi8xj...8a:18t7"_5} = W [ I min o,
(51)
hold on S, where0 < s < r,
gn{ — Mafaxnp...nq (r indexes), (52)
.0z

and V is the local speed of propagation with respect
to the medium, apply to the derivatives ¢f

5 Weak waves

We assume that
(a) the material functions

N E
(Pos Oklijs €ijl, Bris €kjr Wy Kijyr Kk )

are of classC” and the external field$, ¢. and h
are of classC” 2, wherer is any given integer> 2.

Thel.p.d.es (12)-(14) and (15)-(17) are of second
order; thus the adjectiveveakis applied to singular
hypersurfacesS c £ := I x IR3 of the dependent
variables(u;, ¢, T') of orderr > 2.
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Proposition 1 Assume (a). Then weak thermo-
piezoelectric singular hypersurfaces are characteri-
stic for the |.p.d.e.s (15)-(17).

PROOF. LetS be a weak wave; then, across
the jumps of theth partial derivatives of u;, ¢, T')
are defined and the jumps of the partial derivatives of
order lower than- identically vanish.

For r > 2 thel.p.d.es (15)-(17) hold onB’ :=
I x B and forr = 2 they hold onB’" \ S.

As a consequence, for all > 2 the three equa-
tions below, which are obtained by applying to (15)-
(17) the differential operator

r—2
o (r —2 summed indexes), (53)
0% ... %
hold on B’ \ S. That is, we have
Ohiij Ous + eij ¢
Mij 0zq ... x.0x;0T) ”laxa .. 2.0x;0z;
0"y, 0" 2(%1 — pofi)
= 4
R Oz ... x0t? 0z ... Tc 4
o 0"u; . 0" ¢
kij Oz . ..x:0x;0x) i Oz, .. . x07;0x},
r—2 ) .
0% ... Te
e orrT o 0"
ki oz, .. T 00y, %0z, . . L0z ;0
O uy, . IoM0)
+To6%; 0zq ... 2020t — Lok 0z ... x:0x0t

_ 87«72(25 + poh)
- 0%g ... Te

Now, by (¢) it follows that the right-hand sides in
equations (54), (55) and (56 ) are terms involving deri-
vatives of order lower tham. Thus their jumps across
S identically vanish. As a consequence, forming the
jumps acrossS of thel.p.d.es (15)-(17) yields

(56)

40

Now, the compatibility conditions for the jumps
(51) apply to each of the functions:;, ¢, T') where,
in the spatial picture})/ must be interpreted as the lo-
cal speed of propagation w.r.t. the medium. Substitu-
ting them in equations (57)-(59) and then multiplying
each term byn, ...n. and summing on the repeated

indexesa, . .. ¢ we have the equations for the jumps
(o — poV281) Ni + eajninjp = 0 (60)
ChjiMiNEAj — €Tk P = 0 (61)
— K NnET + T(]Vﬁijnj)\i +
(Iiﬁcn]’nk — TonkwpV)p =0, (62)
where
ouy (¢ T
Ai = [anr}’ - {am} P T = {anr}' (63)

Note that equations (60)-(62) just coincide with equa-
tions (29)-(31).

Q.E.D.

6 Strong waves

Let S be a singular hypersurface of the dependent
variablesu;, T and ¢, of orderl.

Let n denote a unit oriented normal vector éh
For points onS; the equation of jump corresponding
to the balance equation of linear momentum is

o
ot”’

the equation of jump corresponding to the first
Maxwell’s equation is

[tjn = —p,V] (64)

D] -n =0, (65)

the equation of jump corresponding to the balance

equation of energy is
—po MV + 1T, (66)

n=20.

"q] -

6.1 Strong waves of orderl

O, &b Now we use the kinematical compatibility conditions
O'k:lij[ax . ax&vk} +e zyl{am o OrOr } and the constitutive equations to prove the
a---tctUdy a- c % 7
0"y, roposmon 2 Strong waves of order1 for
90{3% xcatQ}( (17) b, are characteristic for the l.p.d.e.s (15)-
0", B d"¢
Ckij bxa ) ..xcaxiaxk} ~ “ky bxa xcﬁxﬁxk} ® rlroof In fact, we show that ifS; is singular of order
T 5 ) 1 for (u, ¢, T) , then at each pointzy, z2, x3) €
Pk [8:1:(1 .. .xcaazjﬁazk} + Gk [aaza xcaxj(?xk} St the jumps
0" ug, - J"¢ Ou; 0 orT
ToPri | —————| = 1Ti .(59 — ¢ = | = | =
+Tof; [ 5 ..:Ecazcjﬁt} k[ 5- xcﬁxkat} (59) X {%] {%] , {an} (67)



and the speed of propagatidn satisfy the characte-
ristic equation of (18)-(20).

Indeed, from the compatibility condition (50for
u; and the jump law (64) we obtain

ouy

[ta] na = poV?| 5] (68)

by replacing the stress response law (1) we have

(Ualij [ui,j} + €ial [(I),z} - Bal {T} ) Ng = povz)\l ;
(69)
and using the compatibility conditions (50) faf and
¢ i, sinceT is continuous, we have

Talib Ni MpMa + €ial P MpNa = PV 2N, . (70)

which just is equation (29).

Now we apply the procedure above to Maxwell’s
equation; by replacing the constitutive law (2) in the
jump law (65) we obtain

—€4i {¢’ J Ng + €qij [um}na + Wy, [T} ne =0; (71)
now using the compatibility conditions (50) fai;

and @ ;, since T is continuous, the latter equality
becomes

—€a4; PNiNg + €qij Ainjng = 0; (72)
which just is (30).

Lastly we apply the procedure above to the law of
consevation of energy; by replacing the constitutive
law (4) in the jump law (66) we obtain

i Lg. _als

—eo(|m+ 7 7]+ o (B[] = a[0.]))v

T, (ki | T] = 6l [60])na =05 (73)
by the continuity of T this equality becomes

(= [uss] + @i [0 )V
+T0_1 (mal [TJ — /iﬁ [qana =0; (74)
now using the compatibility conditions (50) fat;,
¢, andT’,, we have
( — ,Bij )\inj + dzi@ni)V

‘I-To_l(lialT’rll — /iaElgpnl) ng = 0, (75)

which just coincides with (31).

Q.E.D.
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6.2 Strong waves of ordei

Now we use the kinematical compatibility conditions
and the constitutive equations to prove the

Proposition 3 Let S be a strong wave of ordér for

(u, ¢, T') such that[u] = 0.
Then S is characteristic if and only if

(eial g‘”’ [¢}U1/Ji,7' - ﬁal [T} )na =0 (76)
(= o™ (0] wir +@u[7])na =0 (7)

(—~[7] + Toaigm[o] wir)V

+ (“az {T} L K [ﬁb]’g) 9’ Yirna = 0. (78)

)

Proof Let & be singular of order0 for
(u, ¢, T'), with
[u]=0, [¢]#0, [T]+#0;

then, at each pointzy, =2, x3) € S, from the
jump law (64) and the compatibility condition (49),
since [u] = 0, we have

Oouy

[tal} Ng = P0V2 [87’11} ; (79)

by replacing the stress response law (1) we obtain

(Uauj {u”} + €ial [cf)z] — Bal [T] ) na = poV 2N

(80)
and using the compatibility conditions (48) foy and
¢.i, we have

Talib Ni WpNa + €jal (9(” [Gb}a%,r + ‘Pni)na

Bt [ T] ma = paV?Ni5 (81)

this equation differs from equation (29) by the pre-
sence in the left side of the term

(emz g’ M ’ Wi, Ba [T] )na :

Now we apply the procedure above to Maxwell's
equation; by replacing the constitutive law (2) in the
jump law (65) we obtain

(82)

—Cai {(b,z} Ng + €aij [Uiyj} ng + W, {T} ng = 0;
(83)
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now using the compatibility conditions (48) fai;
and ¢ ;, the latter equality becomes

—€4; (gm’ {(b} 701/11‘77 + 4,0712‘) Ng
+ €aij Ainjng + W, [T} ng = 0; (84)

which differs from equation (30) by the presence in
the left side of the term

( — €ai gm- [Qslo_lﬁi,f + ‘Da [T} ) Ng

Lastly we apply the procedure above to the law of
consevation of energy; by replacing the constitutive
law (4) in the jump law (66) we obtain

—po([ﬁo + TlOT] + plo(ﬂij [Uu} — @ [%D)V

(85)

+T, (k| T1) = #Ei[6.1] ) ma = 0 (86)
that is,
(-5 [ = ] + e
+ 15 (ko [T0] = K8 [6]) na = 05 (8D)

now using the compatibility conditions (48) fai;,
¢ ; and T, this equality becomes

( - {T} — TpBijAing + Tow; (97" [Qﬁ} ’01/%‘,7 + 4Pni))v

+ (f‘@az(gm [T}Ui/fl,r +7)

(g [8] e+ om))na = 0,(88)

which differs from equation (31) by the presence in
the left side of the term

(=[7] + Toaigm[o] wir)V

+(’{al [T} . - K‘fl {QZ)} U)gaT QZ)LT Ng -

) )

(89)
Hence equations (29)-(31) hold if and only if equa-
tions (76)-(78) hold.

Q.E.D.

As a consequence of the last proposition we have
that, generally, strong waves of orderare not cha-
racteristic.

Forp=1,2, 3 0=1,2 put

apO' = eipl gUTw’i,T 9 ap3 = _/Bap n(l (90)
bo = —€qi gm—wimna (91)

o = (To,;V — nﬁna)g”wiﬁ (92)

Co43 = kal QJT%‘, T n®. (93)

42
Hence by ordering the variables as
([gb]J, (17, [T]vg> the matrix of the system of
equations (76)-(78) is
at a2 a® 0 0
ast ay? ay® 0 0
M - G;gl a3 a33 0 0 (94)
by by b3 0 O
¢t Cc2 —79 € G5

Note that we havedet M = 0 for any possible
choice of the material parameters and of the propaga-
tion direction. Thus equations (70)-(88) are compati-
ble with the existence of characteristic strong waves
of order 0.

References:

[1] A.C. Eringen,Mechanics of Continuaobert E.
Krieger Publishing Company-Inc., second edi-
tion 1963.

[2] A.C. Eringen and G.A. MauginElectrodyna-

mics of Continua | Springer-Verlag New York

Inc 1990.

K. Majorkowska-Knap, Dynamical Problems

of Thermo-piezoelectricity, BULLETTIN DE

L'ACADEMIE POLONAISE DES SCIENCES,

Series des sciences techniques, Vol.XXVII, No.

2,97-105 [139-147], 1979.

P. Chadwick and B. Powdrill, Singular surfa-

ces in linear thermoelasticitynt. J. Engng Sci.

\Vol.3, 561-595, 1965.

[5] T. Y. Thomas, Plastic Flow and fracture in So-
lids, Academic Press, New York/London 1961.

[6] J. Hadamardl.econs sur la Propagation des On-
des et les Equations de I'Hydrodynamiqtter-
man, Paris 1903.

H.F. Tiersten, On the Nonlinear Theory of Ther-
moelectroelasticitynt. J. Engng Scivol.9, 587-
604, Pergamon Press 1971.

[8] A. Montanaro, On Discontinuity waves in Li-
near Piezoelectricity]. ElasticityVol.65, 49-60,
2001.

[3]

[4]

[7]



