
Scalable Middleware for Context-Aware Ubiquitous Computing 
 

YOUNG-CHUL SHIM, HO-SEOK KANG, SEHUN NO 
Department of Computer Engineering 

Hongik University 
72-1 Sangsudong, Mapogu, Seoul 

Republic of Korea 
  

 
 

Abstract: - In ubiquitous computing systems it is important for applications to obtain context information and 
adapt their behavior according to context information. For a ubiquitous application to obtain and use context 
information, it is necessary to provide basic services to discover proper context providers and exchange/store/infer 
from context information. Moreover, when providing such services, non-functional issues such as scalability, 
security, heterogeneity, etc. should also be considered. In this paper we introduce the architecture for a middleware 
providing basic services. This middleware makes it easier for ubiquitous applications to obtain context information 
and for sensor networks to provide context information. We also explain how the proposed middleware addresses 
the non-functional issues. 
 
Key-Words: - Context-Awareness, Ubiquitous Computing, Middleware, Distributed Computing 
 
1   Introduction*

In ubiquitous computing nearly everything is 
connected to the network in order to provide service 
and information on anything anywhere and anytime. 
For ubiquitous applications, it is important to be able 
to perceive context information on surrounding 
environments and adapt their behavior according to 
context information. Some of the examples for 
contexts include the location of a person, time, 
temperature, the velocity of an object, etc. An entity 
which obtains and uses context information is called a 
context consumer while an entity providing context 
information is called a context provider. Sensor 
networks are typical examples of context providers. 
     But context consumers and providers can 
encounter many problems while trying to obtain and 
provide contexts. Context consumers must discover 
proper context providers and exchange context 
information using some communication protocols. 
Moreover, context consumers and providers can move 
their location during operation. It is also important to 
process context information efficiently and securely in 
spite that there are a large number of context 
consumers and providers of many different hardware 
and software types. 

                                                           
*  This research was supported by the MIC Korea under the 
ITRC support program supervised by the IITA and also 
supported by the second Brain Korea(BK) 21 Project in 2006 

     Early research works on the middleware for 
context-aware ubiquitous computing includes Context 
Toolkit[1] and Gaia[2]. They define core services and 
frameworks for building distributed context-aware 
applications. Their core services are discovering 
context providers, storing and exchanging context 
information, and inferring from simple context 
information but they do not address other essential 
issues such scalability and security. The Solar system 
implements context fusion networks and tries to 
enhance the scalability by enabling sharing of partial 
results obtained during the evaluation of context 
requests[3]. The Confab is a toolkit which facilitates 
the construction of privacy-sensitive ubiquitous 
applications[4]. While the Solar system focuses on 
only some aspects of scalability, the Confab toolkit 
focuses on only the privacy aspect of security. The 
Pace system tries to address most of the important 
issues in middleware but it is not quite clear whether 
their solution is adequate and sufficient especially in 
the area of scalability and security in spite of the 
developer’s claim[5]. 
     In this paper we propose a new middleware 
architecture for context-aware ubiquitous computing. 
The proposed middleware architecture provides 
mechanisms for not only discovering context 
providers and exchanging/storing/inferring from 
context information but also enhancing scalability 
through the distributed processing of context requests 
and guaranteeing the integrity and privacy of 

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007      504



exchanged context information. The rest of the paper 
is organized as follows. Section 2 lists the 
requirements of middlewares for context-aware 
ubiquitous computing systems and Section 3 describes 
the proposed middleware architecture. Section 4 
explains how the new architecture supports the 
identified requirements and is followed by the 
conclusion in Section 5 
 
 
2   Requirements of the Middleware 
In this section we explain requirements of the 
middleware for the context-aware ubiquitous 
computing. Henricken et al summarized middleware 
requirements in [5] and we adopt and slightly modify 
them as follows. 
 
- Scalability: The number of context consumers and 

context providers can grow very large. Nevertheless, 
collection and storage of context information must 
be efficient and context consumer’s requests for 
context information should be processed efficiently. 

- Security: Security for context information stored in 
context providers and context information 
exchanged among consumers and providers must be 
guaranteed. Authenticity of participants in the 
context information exchange should be proven and 
the integrity of the exchanged context information 
must be guaranteed. There should be proper access 
control mechanisms so that context information 
should be disclosed only to authorized consumers in 
a proper granularity. Moreover, there must be 
proper information flow control mechanisms so that 
the information flow of context information among 
providers and consumers should be controlled and, 
if necessary, traced. 

- Heterogeneity: Not only various types of sensor 
devices but also many different kinds of context 
consumer hardware such as PDAs, notebooks, 
desktop computers, etc must be supported. We have 
to consider a variety of operating systems, 
programming languages, and interfaces, too. 

- Ease of configuration: Hardware and software 
components providing contexts should be easily 
configured into the ubiquitous system and context 
consumer components must also be easily 
connected to the system. 

- Mobility: Context consumers and providers can 
change their location. In spite of their movements, 
their location should be identified and proper routes 

to them should be found so that context-related 
messages can be delivered to them correctly. 

- Intelligence: Sensors usually provide only low-level 
basic context information. But users may want to 
make decisions based on high-level knowledge 
inferred from basic information. The middleware 
should provide intelligence mechanism bridging 
these semantic gaps between sensors and users. 

 
 
3   Architecture of the Middleware 
In this section we first describe the overall architecture 
of the proposed middleware. Figure 1 shows the 
overall architecture along with its environment. 
Conceptually it consists of two components: context 
consumer component and context provider component. 
A user who wants to get context information registers 
its request at the consumer context handler, which 
analyzes the context request and decides whether it 
needs the cooperation of context providers. If so, it 
decomposes the request into subtasks and sends those 
subtasks that should be processed by outside context 
providers to the proper context providers. It can find 
the IP addresses of context providers by consulting 
either context brokers or DNS servers. While 
processing a context request, the consumer context 
handler can access consumer knowledgebase to make 
intelligent decisions. The knowledge is provided by 
users. 
     There are two kinds of entities collecting and 
providing context information. The first kind is a 
sensor network which is deployed at some area and 
collects context information from that area. There can 
be a large number of sensor networks, each of which is 
responsible for some geographical area and some 
sensor types. A sensor network consists of one 
coordinator and a large number of sensors. The 
context provider component in Figure 1 resides in the 
coordinator. When a certain sensor network is 
deployed, its coordinator registers the following 
information at the context broker: the IP address of the 
coordinator and the area and the sensor types. The 
second kind of context providers is any type of 
computing nodes such as PDA or PCs. The context 
provider component deployed on a node collects and 
stores context information pertaining to the node itself 
or the owner of the node. This node registers its IP 
address at the DNS servers. 
The context provider provides two kinds of contexts: 
dynamic contexts and static contexts. User  locations  

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007      505



  

 
 
 
Consumer 

Knowledge 
Base 

Context Consumer 
Component 

 
 
 
Consumer 
Context 
Handler 

Context 
Synthesizer 

Dynamic 
Context 

History DB 

Static 
Context
Objects

Sensor 

Dynamic
Context 
Objects

Context Brokers, 
DNS 

User 

Context Provider Component 

Context 
Query 

Processor 

Context 
Privacy 

Policy DB 

Static 
Context DB

Fig.1 Proposed Architecture for Middleware 

Context 
Event 

Detector 

and temperatures are examples of dynamic contexts 
that can change over time and are collected by sensors. 
Contexts such as building layout and a person’s phone 
number are fairly static and stored in a database. A 
dynamic context object provides object-oriented 
abstraction of a sensor collecting dynamic context 
information while a static context object provides the 
object-oriented abstraction of static context 
information. These context objects provide only 
low-level context information and the context 
synthesizer is introduced to enable high-level contexts 
to be specified and then inferred using the low level 
contexts. 
     Context consumers can obtain context by sending 
queries to context providers. The query is answered by 
the context query handler using context information in 
the dynamic/static context objects and the context 
synthesizer. Context synthesizers infer complex 
context information from basic context information 
and rules. A context consumer can also request to be 
notified when a context that they are interested in 
becomes true by registering the context specification 
to the context event handler, which detects when that 
context becomes true and notifies the consumer. 
      

When providing and obtaining context, we have to 
consider two security issues: integrity and privacy.             
When obtaining contexts. A context consumer expects 
that contexts come from only authentic context 
providers and their contents are not modified by 
intruders and, therefore, wants the integrity of contexts. 
Likewise, context providers also want the integrity of 
context request messages from context consumers. 
Privacy of contexts is an important issue, too. Context 
information should not be disclosed to unauthorized 
entities. Moreover, context information should be 
provided only at a proper resolution level. For 
example, when providing location information of a 
certain person, the exact room number in which that 
person is located can be provided to some entities 
while only the building number should be provided to 
other entities. Context privacy policies dictate who 
can get context information at what resolution level. 
 
 
4   Supports for Some Requirements 
In this section we explain how the proposed 
architecture supports requirements for the middleware 
for ubiquitous computing. 
 

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007      506



4.1 Support for Scalability 
One of the most important issues in enhancing 
scalability is how to efficiently handle requests for 
queries and event detections. To achieve this goal, it is 
desirable to decompose the specification of queries 
and events into subtasks and distribute them to context 
providers. Here we only consider context providers 
consisting of sensor networks for brevity. For the 
purpose of explanation, we assume that the whole area 
is divided into organizations, an organization consists 
of buildings, and a building is comprised of rooms. 
Location names are specified hierarchically like 
Internet domain names. So rm707.buildingT.hongik is 
the room 707 at the building T in the Hongik 
University. Any suffix of this name can be used as 
location names. Location names can also include 
variables. So ?x.hongik means some unknown 
building in Hongik University. We also assume that 
each sensor network is responsible for a building and 
collects data of a certain type from that building. 
     We first explain algorithms for decomposing and 
allocating query specifications. We consider following 
two query specifications. These specifications can be 
depicted as trees as in the figure 2.  
 

Q1 = (and (location (person john) 
                     (locationName ?x.?y.hongik)) 
                 (location (noOfPeople > 10) 
                     (locationName ?x.?y.hongik))) 
Q2 = (or (location (person john) 
                     (locationName buildingA.hongik)) 
               (location (person john) 

(locationName buildingB.hongik))) 
 
Q1 queries if John is in a certain room and there are 
more than 10 people in that room. In this case the 
whole query specification should be distributed to the 
coordinators of all the buildings in the Hongik 

University. Q2 asks if John is in either the building A 
or B. The first subtask (ST1) of determining if John is 
in the building A is allocated to the building A’s 
coordinator and the second subtask (ST2) of 
determining if John is in the building B is allocated to 
the building B’s coordinator. The subtask (ST3) of 
combining results of these two subtasks is the 
responsibility of the consumer context handler from 
which the original query was sent. 

During the execution of the decomposition 
algorithm, a location information tree (LIT) is built as 
in the figure 3. For each query specification node there 
is one LIT node consisting of the unit field and the 
range field. The unit field specifies whether the 
corresponding specification node will be allocated to 
coordinators or the consumer context handler. If the 
specification node is to be allocated to coordinators, it 
is allocated to all the coordinators in the area specified 
by the range field. However, if a query is 
location-independent, it can be answered at any place 
and, therefore, its LIT node has don’t care for the unit 
field. The unit field can have following values. 
 
- known building name: spec. node is allocated to that 

building coordinator. 
- location variable: spec. node is allocated to all the 

building coordinators in the area specified by the 
range field.  

- don’t care: the corresponding query specification is 
location-independent so it can be checked at any 
node. 

- consumer: spec. node is allocated to the consumer 
context handler.  

 
An LIT is built using the following algorithm. 
 

decompose (spec. node) { 
  if (leaf node)  
    build-leaf-node-location-information-tree and 

(location(person john)...)                 (location(noOfPeople>10)...)
                                             

    (a) Q1 

or 

(location…(… buildingA.hongik))(location…(…buildingB.hongik))    

                                                  (b)Q2 

Fig.2 Specification Trees for constraints 

ST1 ST2ST3 

      (spec. node) 
  else /* inner node */ 
    if (node has a binary operator) { 

/* and, or */ 
decompose (left child spec. node);  
decompose (right child spec. node); 

          merge (left child spec. node’s LIT,  
                    right child spec. node’s LIT)} 
       else /* node has a unary operator (not) */ 
          copy child spec. node’s LIT} 
 
The algorithm starts from the root node of a 
specification tree, goes down to the leaf node, and then  

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007      507



        

incrementally builds an LIT traversing the 
specification tree upward. 
     Build-leaf-node-location-information-tree builds 
an LIT for leaf nodes in a specification tree as follows. 
 
(1) (location (person john) 
          (locationName buildingA.hongik)) 
      → (unit = buildingA.hongik, range = don’t care) 
(2) (location (person john) 
          (locationName ?x.?y.hongik))  
      → (unit = ?y, range =  hongik)  
(3) (location (person john) (locationName hongik))            
      → (unit = unknown, range = hongik)  
(4) (weekday (date Today)) 
      → (unit = don’t care, range = don’t care)  
 
The and/or operators have 2 specification subtrees as 
children and the decompose function is applied to 
these two subtrees, building one LIT for each of them. 
The merge function merges these two LITs by 
introducing a new LIT node having these two LIT as 
children. Its unit and range field values are determined 
as follows. 
 

if (at least one child LIT has “don’t care” in its 
     unit field) 
  copy the other child node’s LIT node into the new  
     LIT node which becomes the parent node 
else if ((both child LIT nodes have the same known 
              location name in their unit fields) 
            or (both child LIT nodes have the same 
              variable in their unit fields and the same 
              content in their range fields)) 

    copy child spec. node’s LIT node into the new  
      LIT node 

else 
  put “consumer” value in the unit field of the new 
    LIT nodes 
 

Applying the above algorithm to two query 
specifications in the figure 2 results in LITs in the 
figure 4. 

     After the completion of the decomposition, the 
nodes in the specification tree are allocated to proper 
nodes using the following algorithm. 

Fig.3 Location Information Tree 

unit range 

unit range unit range 

 
allocate(spec. tree) { 
  if (spec. tree is null tree) 
    return () 
  else /* spec. tree has at least one node */ 
      /* Lnode is the corresponding LIT node */  
      /* for the spec. tree’s root */ 
    if (Lnode’s unit is “consumer” or “don’t care”) { 
      allocate root spec. node to consumer context 
        handler; 
      if (operator of root of spec. tree is binary) { 
        allocate(left spec. subtree); 
        allocate(right spec. subtree)} 
      else 
        allocate(child spec. subtree)} 
    else if (Lnode’s unit is known building name) 
      allocate the spec. tree to the designated  
        building’s coordinator 
    else /* Lnode’s unit is a variable */ 
      allocate spec. tree to coordinators of all 
        buildings in area specified by Lnode’s range} 

 
The algorithm classifies specification tree nodes into 
three categories: (1) a node that should be allocated to 
a specific coordinator, (2) a node that should be 
allocated to all the coordinators in a certain area, and 
(3) a node that should be allocated to the consumer 
context handler. Then the algorithm allocates the 

?y hongik 

?y hongik ?y hongik 

(a)LIT for Q1 

BuildingA. 
hongik 

Consum- 
er

Don’t 
Care 

Don’t 
Care

BuildingB 
hongik 

Don’t 
Care

(b)LIT forQC2 

Fig.4 Resulting Location Information Trees 

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007      508



specification nodes to proper coordinators or the 
consumer context handler. Using this algorithm and 
the location information trees in the figure 4, the 
whole query Q1 in the figure 2 is allocated to the 
coordinators of all the buildings in the Hongik 
University while ST1, ST2, and ST3 of the query Q2 
are allocated to the building A’s coordinator, the 
building B’s coordinator, and the consumer context 
handler, respectively. 
     For the decomposition and allocation of event 
specification, the same algorithms are used with only 
minor changes. 
 
4.2 Support for Security 
To guarantee the integrity of context requests and 
replies, we assume that all the users and context 
providers have public key and private key pairs. These 
key pairs are generated and distributed by a certificate 
authority, whose public key is known to all. An 
entity’s public key is published as a certificate signed 
by the certificate authority and an entity’s certificate 
has not only the entity’s id and public key but also its 
role. When an entity sends a context request to the 
context provider, it sends a packet containing (request, 
requestor-id, timestamp, sign, certificate). The sign is 
calculated over (request, requestor-id, timestamp) 
using the private key of the requestor. 
     The signed context request is received by a proper 
context provider, which first verifies the integrity of 
the packet and checks the role of the requestor using 
the sign and the certificate. 
     There can be two kinds of basic context requests. 
The first includes a user name and the other does not. 
A basic request of the first kind asks questions on 
contexts pertaining to a particular person and they can 
be answered by the context owner. Some examples of 
these requests are as follows. 
 

(location (person john) (locationName ?x)) 
(location (person john) 
    (locationName room707.buildingT.hongik)) 

 
The first query asks the location of John and the 
second asks whether John is in a particular room. They 
can be answered by the node representing John. This 
node becomes the context provider and has privacy 
policies for context requests of this type and these 
policies are called per-user context privacy policies. 
Although we just used the name John, in reality the 
name can be in the form of an e-mail address and we 
can find the address of John’s node with the help of the 

DNS service. An example of per-user context privacy 
policies for John is as follows. 
Context 

 
The resolution level for context requests of the 
location context can be a room (lowest resolution), a 
building, or an organization (highest resolution). In the 
above example Mary can ask questions at the building 
level while Don can ask questions at the room level. 
Let’s assume that John is at the room 707 of the 
building T in the Hongik university. If Mary sends the 
above two context requests, the context provider will 
return buildingT.hongik as an answer to the first 
request but will return DN (Don’t Know) to the second 
request because the allowed resolution level for Mary 
is a building but the request was posed with the 
resolution level of a room. If Don sends the same 
context requests, he will get 
room707.buildingT.hongik and Yes as an answer, 
respectively. 

The second type of context requests does not ask 
questions on contexts belonging to a particular person. 
Some examples are as follows. 
 

(temperature (location buildingT) (value ?x)) 
(temperature (location buildingT) (value 27)) 

 
Sensor network coordinators become context 
providers and have per-sensor network context 
privacy policies. The following table includes 
example per-sensor network context privacy policies 
applying to the above requests. 
 

 
The resolution level for this temperature context type 
can be specified as a real number such as 1, 2.5, 5, etc. 
We assume that the temperature of the building T is 27. 
If Don sends above context requests, he will get 27 and 
Yes as answers. But if Mary sends the same context 
requests, the context provider will return (and 25<=  
<30) to the first request and DN (Don’t Know) to the 
second request.  

Type 
Requestor 
ID/Role 

Resolution 

Location Mary Building 
Location Don Room 

Context 
Type 

Requestor 
ID/Role 

Resolution 

Temperature Mary 5 
Temperature Don 1  

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007      509



     The answers returned will also be signed with the 
private key of a context provider and will be in the 
form of either Yes with some value, No, or DN. Basic 
context requests can be combined into a composite 
context request using operator such as and, or, not. 
When partial answers are combined to answer a more 
complex context request, the following rules apply. 
 
  For an operator of the and type: 
      (and Yes DN) = DN,   (and No DN) = No 

For an operator of the or type: 
    (or Yes DN) = Yes,  (or No DN) = DN 
For the not operator: 

      (not DN) = DN 
 
     Entries in the privacy policies include the 
following additional fields to support traceability and 
control information flows. 
 
- Logging: if yes, whenever the corresponding context 

information is accessed, the identity of the requestor, 
the access time, and the provided value are recorded 
to support the traceability. 

- Retention period: specifies how long the requestor 
can retain the provided context information. 

- Forwardibility: if yes, the requestor can forward the 
provided context information to some other entity. 

 
4.3 Supports for other Requirements 
The proposed middleware supports other requirements 
as follows. 
 
- Heterogeneity and ease of configuration: Variety 

of sensors and nodes providing context information 
are modeled as dynamic context objects using a 
standard format. Moreover, context consumers 
access context information using standard 
communication protocols and message formats. 
Application programs can be connected to the 
context consumer components of the middleware 
through standard programming interfaces. All these 
standard features on data modeling, communication 
protocols, message formats, and programming 
interfaces help deploy and configure heterogeneous 
sensors and user application software and hardware 
without incurring much difficulty. 

- Mobility: Mobility of a single node acting as a 
context consumer or context provider can be 
supported by the standard mobile IP mechanism 
easily. When the location and/or range of a sensor 
network changes, this change is detected and 

reported to the broker system by the coordinator of 
the moving sensor network. Therefore, context 
consumers need not be aware of the movement of 
sensor networks. 

- Intelligence: Intelligence mechanisms are supported 
at two places. Context provider has context 
synthesizer to infer high-level context information 
from basic context information. Context consumer 
has consumer knowledge base and inference 
mechanism in the consumer context handler to 
enable users to arrive at high level decisions using 
context  information from context providers. 

 
 
5   Conclusion 
Middleware for context-aware ubiquitous computing 
systems should provide basic services for discovering 
proper context providers, communicating context 
request/reply messages, processing context requests, 
collecting/storing context information, and making 
high-level decisions using basic context information 
and knowledge. In this paper, we described the 
architecture for middleware providing these basic 
services. We explained how the proposed middleware 
architecture supported scalability through the 
distributed processing of context requests and 
supported security by guaranteeing the integrity and 
privacy of context information itself and messages 
carrying it. We also briefly explained how the 
middleware could handle issues such as heterogeneity, 
ease of configuration, mobility, and intelligence. 
 
References: 
[1] Dey, A.K., Salber, D., Abowd, G.D., A Conceptual 

Framework and a Toolkit for Supporting the Rapid 
Prototyping of Context-Aware Applications, 
Human-Computer Interaction 16, 2001, pp. 97-106 

[2] Roman, M. et al, Gaia: A Middleware 
Infrastructure for Active Spaces, IEEE Pervasive 
Computing, Special Issue on Wearable Computing 
1, 2002, pp. 74-83 

[3] Chen, G. and Kotz, D., Design and 
Implementation of a Large-Scale Context Fusion 
Network, Int. Conf. on Mobile and Ubiquitous 
Systems: Networking and Services, 2004 

[4] Hong, J.I. and Landay, J.A., An Architecture for 
Privacy-Sensitive Ubiquitous Computing, 
MobiSys, 2004, pp.177-189 

[5] Henricksen, K. and Indulska, J., Middleware for 
Distributed Context-Aware Systems, LNCS 3760, 
2005, pp. 846-863 

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007      510


