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Abstract: - This work uses a thermal non-equilibrium model to study the natural convection heat transfer near a 
horizontal cylinder of elliptic cross section with constant wall temperature in a fluid-saturated porous medium. 
A coordinate transformation is used to obtain the nonsimilar governing boundary layer equations. The 
transformed governing equations are then solved by the cubic spline collocation method. Results for the local 
Nusselt numbers are presented as functions of the porosity scaled thermal conductivity ratio, the heat transfer 
coefficient between the solid and fluid phases, and the aspect ratio when the major axis of the elliptical cylinder 
is vertical (slender orientation) and horizontal (blunt orientation). An increase in the porosity scaled thermal 
conductivity ratio or the heat transfer coefficient between the solid and fluid phases tends to increase the heat 
transfer rates. Moreover, the heat transfer rates of the elliptical cylinder with slender orientation are higher than 
those with blunt orientation. 
 
Key-Words: - Thermal non-equilibrium model, Natural convection, Porous medium, Elliptic cylinder, Cubic 
spline collocation method, Coordinate transformation. 
  
1   Introduction 
Heat and mass transfer driven by thermal and solutal 
buoyancy forces in a fluid-saturated porous medium 
is of great importance in geophysical, geothermal and 
industrial applications, such as the extraction of 
geothermal energy and the migration of moisture 
through air contained in fibrous insulations.  

Merkin [1] presented the similarity solutions for 
natural convection heat transfer on a horizontal 
cylinder in a saturated porous medium. Pop et al. [2] 
examined the problem of natural convection heat 
transfer about cylinders of elliptic cross section in a 
porous medium. Yih [3] studied the heat and mass 
transfer from a permeable horizontal cylinder in a 
fluid-saturated porous medium. Kumari and Jayanthi 
[4] studied the non-Darcy non-Newtonian natural 
convection flow over a horizontal cylinder in a 
porous medium. Cheng [5] studied the heat and mass 
transfer from a permeable horizontal cylinder of 
elliptic cross section in a fluid-saturated porous 
medium.  

The thermal non-equilibrium model is used to 
account for the temperature difference between solid 
and fluid phases within the representative control 
volume in porous media. Rees and Pop [6] studied 
the vertical natural convection boundary-layer flow 
in a porous medium using a thermal non-equilibrium 

model. Mohamad [7] studied the natural convection 
in a differentially heated cavity filled with a saturated 
porous matrix. Baytas and Pop [8] used a thermal 
non-equilibrium model to study the natural 
convection flow in a square porous cavity. Saeid [9] 
used a thermal non-equilibrium model to study the 
natural convection near a horizontal cylinder in a 
porous medium.   

This work applies the coordinate transformation 
and the cubic spline collocation method to analyze 
the heat transfer by natural convection along a 
horizontal elliptical cylinder in fluid saturated porous 
media with constant wall temperature using a thermal 
non-equilibrium model. The influence of the thermal 
conductivity ratio parameter, the heat transfer 
coefficient parameter, and the aspect ratio on the heat 
transfer characteristics near a horizontal elliptical 
cylinder in a fluid-saturated porous medium is 
examined in both cases when the major axis is 
horizontal (blunt orientation) and vertical (slender 
orientation). 

 
 
2   Problem Formulation 
Consider the steady laminar natural convection 
boundary-layer flow driven by temperature gradients 
near a horizontal cylinder of elliptic cross section 
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embedded in a homogeneous fluid-saturated porous 
medium. The coordinate system for the elliptical 
cylinder with blunt orientation is shown in Fig. 1, 
where a is the length of semi-major axis, b is the 
length of semi-minor axis, A represents the angle 
made by the outward normal from the cylinder with 
the downward vertical, and B is the eccentric angle. 
For cylinders of elliptic cross section, there are two 
orientations to consider: the orientation is blunt when 
the major axis is horizontal, as shown in Fig. 1, and 
the orientation is slender when the major axis is 
vertical. 

The surface of the cylinder is held at a constant 
temperature wT  which is higher than the ambient 
fluid temperature ∞T . The fluid properties are 
assumed to be constant except for density variations 
in the buoyancy force term. The viscous drag and 
inertial terms are neglected. Using the thermal 
non-equilibrium model and Darcy’s law, we can 
write the governing boundary-layer equations in 
two-dimensional Cartesian coordinates as [9] 
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The appropriate boundary conditions are: 
0=v , wf TT = , ws TT =  on 0=y                               (5)                                               
0=u , ∞= TT f , ∞= TTs  as ∞→y                         (6)                                                  
Here u  and v  are the volume-averaged velocity 

components in the x  and y  directions, respectively. 

fT  and sT  are the fluid-phase and solid-phase 
temperature, respectively. fk  and sk  are the 
fluid-phase and solid-phase thermal conductivity, 
respectively. h  is the heat transfer coefficient 
between the solid and fluid phases. Property ν  is the 
kinematic viscosity of the fluid, and g  is the 
gravitational acceleration. β  is the coefficient of 
volume expansion. 

f
ρ  and 

fPc  are the density and 

constant-pressure specific heat of the fluid, 
respectively. *K  and ε  are the permeability and 
porosity of the porous medium, respectively. 

After introducing the stream function ψ  to 
satisfy the relations: yu ∂∂= ψ and xv ∂∂−= ψ ,  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Physical model and coordinates for an elliptic 
cylinder of blunt orientation. 

 
we define the nondimensional variables: a/x=ξ , 

( ) 21Raay=η ,  ( )21Rafεαψψ = , 
( ) ( )∞∞ −−= TTTT wffθ , ( ) ( )∞∞ −−= TTTT wssθ  , 

where )()TT(aKgRa fw νεαβ ∞−=  is the 
Darcy-Rayleigh number and fα  is the thermal 
diffusivity of the fluid, Eqs. (1)-(6) become the 
following equations: 
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The associated boundary conditions are 

0=
∂
∂

ξ
ψ , 1=fθ , 1=sθ  on 0=η                             (10) 

0=
∂
∂

η
ψ , 0=fθ , 0=sθ  as  ∞→η                        (11) 

A further transformation is needed for bodies 
with rounded lower ends because ξAsin  
approaches a constant value as ξ  approaches zero [2, 
10]. The new nondimensional variable is defined as 

( ) ψξηξ 1, −=f                                                      (12)                    
Substituting Eq. (12) into Eqs. (7)-(9), we obtain the 
following boundary-layer governing equations: 

The resulting dimensionless governing equations 
become the following equations: 
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( ) 0=−+′′ sfs KH θθθ                                            (15)                                              
The boundary conditions are 

0=f , 1=fθ , 1=sθ  on 0=η                              (16)                                            
0=′f , 0=fθ , 0=sθ  as ∞→η                          (17)                                              

Note that primes denotes partial derivation with 
respect to η . Moreover, the thermal conductivity 
ratio parameter and the heat transfer coefficient 
parameter are respectively defined as 

( ) ( )[ ]sf kkK εε −= 1   and ( ) ( )RakhaH fε2= . 
Here ξ  and Asin  can be given in terms of the 

eccentric angle B  by the relations: 
 (1) For blunt orientation: 
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(2) For slender orientation: 
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where e  denotes the eccentricity expressed as 
( ) 21221 abe −=  and b/a is the aspect ratio of the 

elliptic cylinder.  
When ξ  approaches zero, as shown in Eqs. 

(18)-(21), the value of ξAsin  approaches the aspect 
ratio ab /  for the elliptic cylinder with blunt 
orientation. Moreover, the value of ξAsin  
approaches the value of 22 ba  for the elliptic 
cylinder with slender orientation as ξ  approaches 
zero. 

The local Nusselt number for the fluid can be 
written as 
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The local Nusselt number for the solid matrix can be 
given by 
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The local Nusselt number for the porous medium can 
be expressed as 
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Table 2. Comparison of values of RaNu  for 

1=a/b  between the present results with the 
solutions reported by Merkin [1] and Yih [3]. 

 
ξ  Merkin 

[1]  
Yih [3] Present 

results 
0 0.6276 0.6276 0.6276

0.2 0.6245 0.6245 0.6245

0.6 0.5996 0.5996 0.5997

1.0 0.5508 0.5508 0.5510

1.4 0.4800 0.4800 0.4804

1.8 0.3901 0.3899 0.3904

2.2 0.2847 0.2843 0.2849

2.6 0.1679 0.1677 0.1680

3.0 0.0444 0.0446 0.0444

 
 

3   Problem Solution 
The governing differential equations, Eqs. (14) and 
(15), and the boundary conditions, Eqs. (16) and (17), 
can be solved by the cubic spline collocation method 
[11, 12]. The Simpson’s rule for variable grids is used 
to calculate the value of f at every position from Eq. 
(13) and the boundary conditions, Eqs. (16) and (17). 
Variable grids with 200 grid points are used in the η  
direction. The minimum step size is 0.01. The value 
of the edge of the boundary ayer ∞η  is about 12. 
Moreover, a grid with 150 grid points is used in the 
ξ  direction. At every grid point, the iteration process 
continues until the convergence criterion for all the 
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Fig. 2.  Effects of heat transfer coefficient parameter 
on the local Nusselt number for the fluid and solid 
phases.  

 
 
 

 

 

 

 

 

 

 

 

 

Fig. 3. Effects of thermal conductivity ratio 
parameter on the local Nusselt number for the fluid 
and solid phases. 
 

variables, 610− , is achieved. The present calculation 
for Eqs. (13)-(17) can be performed from the bottom 
up to the top of the elliptic cylinder. Eqs. (14) and (15) 
can be discretized by using the false transient 
technique and the cubic spline collocation method 
[11, 12] as 
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Fig. 4.  Effects of heat transfer coefficient parameter 
on the local Nusselt number for the porous medium.  

 
 
 
 
 
 
 

 
 
 

 

 

 

 

 

Fig. 5. Effects of thermal conductivity ratio 
parameter on the local Nusselt number for the porous 
medium. 
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Fig. 6. Effects of aspect ratio on the local Nusselt 
number for the porous medium.  
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Note that ϑ  refers to fθ  and sθ , and the quantity 
nn τττ∆ −= +1  represents the false time step. 

 After some arrangement, Eqs. (25) and (26) can 
be written in the following spline approximation 
form: 
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The quantities F, G, and S are known coefficients 
evaluated at previous time steps (Table 1).   By using 
the cubic spline relations [11, 12], Eq. (28) may be 
written in the following tridiagonal form as  

jijijijijijiji DCBA ,1,,,,1,, =++ +− ϑϑϑ              (29) 
Here Eq. (29) can be easily solved by using the 
Thomas algorithm. 

In order to check the accuracy of the present 
method, the local Nusselt number 5.0/ RaNu  for 

1=ab  obtained in the current study under Darcian 
assumptions for a horizontal circular cylinder are 
compared with the solutions reported by Merkin [1] 
and Yih [3] by using the thermal-equilibrium model. 
As shown in Table 2, the present results are found to 
be in excellent agreement with the results of Merkin 
[1] and Yih [3].  

Fig. 2 plots the variation of the local Nusselt 
number for the fluid and solid phases,  50.

f Ra/Nu  

and 50.
s Ra/Nu , with the eccentric angle B of the 

elliptical cylinder for various heat transfer coefficient 
parameters ( =H 0.1, 0.5, and 1), K=1, and b/a=0.6 
and the elliptical cylinder with blunt orientation. 

Comparing the curves in Fig. 2, we can deduce that 
increasing the heat transfer coefficient parameter 
tends to decrease the difference between the local 
Nusselt number of the fluid and solid phases in 
porous media. As the heat transfer coefficient 
parameter increases, the local Nusselt number for the 
fluid phase is decreased while the local Nusselt 
number for the solid phase is increased   

Fig. 3 plots the variation of the local Nusselt 
number for the fluid and solid phases,  5.0/ RaNu f  

and 5.0/ RaNus , with the eccentric angle B of the 
elliptical cylinder for various thermal conductivity 
ratio parameters ( =K 1 and 10), H=0.5, and b/a=0.6 
and the elliptic cylinder with blunt orientation. The 
Nusselt number for the fluid phase is always higher 
than that for solid phase for given values of heat 
transfer coefficients and thermal conductivities; thus 
major part of heat transfer is taken place in the fluid 
phase. Moreover, increasing the thermal conductivity 
ratio parameter tends to decrease the difference 
between the local Nusselt number of the fluid and 
solid phases in porous media. The local Nusselt 
numbers for the fluid and solid phases in porous 
media increase with an increase in the thermal 
conductivity ratio parameter. 

Fig. 4 plots the variation of the local Nusselt 
number for the porous medium 5.0/ RaNu  with the 
eccentric angle B of the elliptical cylinder for various 
heat transfer coefficient parameters ( =H 0.1, 0.5, 
and 1), K=1, and b/a=0.6. For the elliptical cylinder 
with blunt orientation, the local Nusselt number first 
increases with distance from the stagnation point, 
reaches a maximum, and then decreases to zero at the 
top of the elliptical cylinder. For an elliptical cylinder 
with slender orientation, the local Nusselt number 
decreases monotonically from the lower end of the 
cylinder to the upper end of the cylinder; that is due 
to the increase in boundary layer thickness. Moreover, 
comparing the curves in Fig. 4, we can deduce that 
increasing the heat transfer coefficient parameter 
tends to increase the heat transfer rates between the 
porous medium and the wall.  

Fig. 5 shows the local Nusselt number for the 
porous medium 5.0/ RaNu  as functions of the 
eccentric angle B of the elliptical cylinder for various 
thermal conductivity ratio parameters ( =K  1 and 
10), H=0.5, and b/a=0.6. Comparing the curves in 
Fig. 5, we can deduce that increasing the thermal 
conductivity ratio parameter tends to increase the 
heat transfer rates between the porous medium and 
the wall. 

Fig. 6 shows the local Nusselt number for the 
porous medium 50.Ra/Nu  as a function of the 
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eccentric angle B of the elliptical cylinder for various 
aspect ratios (b/a=0.6, 0.8, and 1), H=0.5, and K=1. 
The total heat transfer rates of the elliptic cylinder 
with slender orientation are higher than those of the 
elliptical cylinder with blunt orientation for any 
aspect ratio b/a smaller than one. When the aspect 
ratio b/a is increased (i.e., the eccentricity is 
decreased), the total heat transfer rates for the elliptic 
cylinder of slender orientation tend to decrease while 
those for the elliptic cylinder of blunt orientation tend 
to increase, and finally the total heat transfer rates of 
slender orientation equal to those of blunt orientation 
when the aspect ratio b/a equals to one. Therefore, 
the elliptic cylinders of slender orientation are found 
to be superior to the elliptic cylinders of blunt 
orientation from the viewpoint of the total heat 
transfer rates in fluid-saturated porous media. 
 
 
4   Conclusion 
Natural convection heat transfer from a horizontal 
cylinder with elliptic cross section in porous media 
has been studied by using a thermal non-equilibrium 
model. Here a coordinate transformation is employed 
to transform the governing equations into 
nondimensional nonsimilar boundary layer equations. 
The obtained boundary layer equations are then 
solved by the cubic spline collocation method. The 
effects of the heat transfer coefficient, thermal 
conductivity ratio, and the aspect ratio on the Nusselt 
numbers for the elliptical cylinders of blunt and 
slender orientations in porous media have been 
studied. The results show that increasing the porosity 
scaled thermal conductivity ratio or the heat transfer 
coefficient between the solid and fluid phases tends 
to increase the heat transfer rates. Moreover, the heat 
transfer rates between the porous medium and the 
surface for the elliptical cylinder with slender 
orientation are higher than those with blunt 
orientation. 
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