
Rich Component Generation for Web Applications
Using Custom Tags

Takao Shimomura
University of Tokushima

Dept. of Info Sci. & Intel. Syst.
Tokushima

JAPAN

Kenji Ikeda
University of Tokushima

Dept. of Info Sci. & Intel. Syst.
Tokushima

JAPAN

Quan Liang Chen
University of Tokushima

Course of Info Sci. & Intel. Syst.
Tokushima

JAPAN

Nhor Sok Lang
University of Tokushima

Course of Info Sci. & Intel. Syst.
Tokushima

JAPAN

Muneo Takahashi
Toin Univ. of Yokohama
Dept. of Control & SE

Yokohama
JAPAN

Abstract: A variety of rich client technologies such as Flash, Flex, OpenLaszlo, JavaScript, AJAX, and Applet
have been employed to develop Web applications. They can display flexible and powerful graphical user interface
in Web pages and excel the original functions of Web browsers that display HTML documents. This paper presents
a rich-component definition method that enables programmers to easily write Web pages that contain rich compo-
nents, regardless of the types of rich clients. This separates Web programming from Web page design, and we can
share Web application development with other developers.

Key–Words: Code generation, Custom tags, Rich clients, Web applications

1 Introduction
A variety of rich client technologies such as Flash[1],
Flex[2], OpenLaszlo[3], JavaScript[4], AJAX[5], and
Applet [6] have been employed to develop Web ap-
plications. They can display flexible and power-
ful graphical user interface in Web pages and excel
the original functions of Web browsers that display
HTML documents. Some of these rich clients need to
incorporate their plug-in software into Web browsers.
Using the plug-in software, they display particular
files of their own formats, or execute particular pro-
grams. To develop Web applications using these rich
clients, we need to define rich components displayed
in Web pages using not HTML but some other lan-
guages, such as XML-based code of their particular
formats. Therefore, the developers of Web applica-
tions have to be accustomed with each of these XML-
based languages.

Component-based development makes it much
more efficient to develop Web applications [7]. If we
employ useful components, we can develop Web ap-
plications of higher quality, more easily and more ef-
ficiently [8], [9]. Packaging techniques that provide
easy interface to use components are also important

[10].
This paper presents a rich-component definition

method that enables programmers to easily write Web
pages that contain rich components, regardless of the
types of rich clients. This separates Web program-
ming from Web page design, and we can share Web
application development with other developers [11].
The paper first proposes rich component tags that can
be written in the same way and that generate vari-
ous kinds of rich components. It then describes the
method that implements these rich component tags.
To make it possible to write tag handlers [12] that pro-
cess rich component tags as little code as possible for
each rich client, it applies the template method [13] to
constructing these tag handlers.

2 Requirements for Defining Rich
Components

2.1 Example of rich component definition
As an example of rich clients, Fig. 1 shows a Web
page that is displayed using Flex. The upper row in
the Web page shows a list of cake, and the lower row

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 390

<mm:mxml>

<mx:Application styleName="plain" ...>

<mx:Script source="Submit.as"/>

<mx:Script source="DragEventHandlers.as"/>

<mx:Model id="catalogModel" .../>

<mx:HBox width="100%" horizontalGap="10">

<mx:DataGrid id="srcgrid" ...>

...</mx:DataGrid>

<mx:DataGrid id="destgrid" ...>

...</mx:DataGrid>

</mx:HBox>

<mx:Button label="submit" click="submit()"/>

</mx:Application>

</mm:mxml>

................

<mm:mxml>

<mx:Application styleName="plain" ..

................

(a) MXML

<rc:flex name="drag" param="catalog cake"/>

<rc:flex name="drag" param="catalog fruit"/>

(b) Rich tag

Figure 1: Example of drag-and-drop GUI with Flex

shows a list of fruit. In both lists, we can select and
drag an item displayed in the left column and drop it
in the right column. By drag-and-drop operations, we
can change the order of items, return items from right
to left, and select multiple items at a time and move
them. In ordinary HTML functions, it is difficult to
use such flexible and powerful graphical user interface
on Web pages.

In Flex, we write such a Web page using a MXML
language. As shown in Fig. 1(a), we need to write a
lot of code. The method this paper proposes enables
programmers to easily write rich components using a
�rc:flex� tag (See Fig. 1(b)).

2.2 Requirements
To make it possible to define rich components, regard-
less of the types of rich clients, we take into account
the following requirements:

1. We identify rich clients with their rich compo-
nent’s tag name, and for any type of rich client,
we can specify the attribute values of the rich
component tag in the same way.

2. We do not need to write a tag handler that gener-
ates a rich component from scratch. For any type
of rich component, we can write its tag handler
in the same interface.

3. If a new rich client becomes available, we can
easily add a tag that defines its rich components.

3 Rich Component Generation

3.1 Custom tag handlers
We here simply explain custom tags and how their tag
handlers work. As shown in Fig. 2, when a Web

...

.....

Servlet engine

Web browser JSP page Servlet

Tag handler

preprocess

preprocess

invoke

request

request

response

response

...

<tag/>

Figure 2: Invocation of tag handlers

...

<mxml/>

...

<rc/> ...

.....

Tag handler

of rich component

invoke

preprocess

...

.....

Tag handler

of each rich client

invoke

preprocess

response

generate

include

Figure 3: Generation and inclusion of JSP pages

browser sends a request to a JSP page on the Web
server, the Servlet engine on the server preprocesses
the JSP page, generates a Servlet program from it, and
invokes the Servlet program. The Servlet receives the
request, processes it, and then returns the response to
the Web browser.

In this JSP page, we can write any tag program-
mers provide in addition to standard HTML tags such
as �form�, �img�, and �a�. For example, when a
Web browser sends a request to a JSP page in which
�tag/� is written, the Servlet engine preprocesses the
JSP page, generates a Servlet, and then invokes the
Servlet. This Servlet invokes a tag handler that pro-
cesses this �tag/�. The tag handler analyzes the val-
ues of attributes of�tag/�, and then returns an appro-
priate response to the Web browser.

This paper proposes the tags that define rich com-
ponents, and explains how to implement tag handlers
that process these rich component tags. Figure 3
shows the outline of this process. Let’s consider a case

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 391

<%@ taglib uri="rc.tld" prefix="rc" %>

<rc:flex name="drag" param="catalog cake"/>

<rc:flex name="drag" param="catalog fruit"/>

(a) JSP page (flex.jsp)

(b) Tag library (rc.tld)

(c) Tag handler (FlexTag)

<tag>

<name>flex</name>

<tag-class>FlexTag</tag-class>...

<tag>

public class FlexTag extends TagSupport {

 String name;

 HashMap<String, String> params;

 public void setName(String name) {...}

 public void setParam(String param) {...}

 public int doEndTag() {

 generateJsp(...);

 JspRuntimeLibrary.include(...);

 return EVAL_PAGE;

 }

}

(d) JSP file

drag.jsp
generate

include

Figure 4: Generation of rich components using tags

in which a rich component tag �rc/� is written in a
JSP page. When this JSP page receives a request, the
tag handler that corresponds to the rich component is
invoked. This tag hander generates a JSP file in which
some tags for the corresponding rich client are writ-
ten. The tag hander then transfers the request to this
dynamically generated JSP file, and includes the re-
sponse the JSP file returns.

When the dynamically generated JSP file is in-
cluded, this JSP file is preprocessed by the Servlet
engine, and the tags in this JSP file the rich client
provides are processed by the tag handlers of the rich
client.

3.2 Rich Component Generation Processes
There are some rich clients in which, to define their
rich components, we have only to write a combination
of HTML and JavaScript code, and others in which,
we need to write XML-based code of their particu-
lar formats such as MXML [2], Code generation tags
[14], and LZX [3].

If we need to write only HTML code to define
rich components to be displayed in a Web page, the
tag handler that processes the rich component tag has
only to transform the tag into HTML code as in Page-
Gen [15]. However, in the case of JSP pages in which
particular XML-based code is written as in Flex, this
simple method does not work because the JSP page
must be preprocessed by the tag handler the corre-
sponding rich client provides.

In the method this paper proposes, program-
mers specify the type of a rich client using the tag
name of a �rc:richComponent� tag, and all types

(a) Abstract tag handler (RichTag)

(b) Tag handlers

(c) JSP pages

public class FlexTag extends RichTag {

 public void generateJsp(...) {...}

}

public abstract class RichTag extends TagSupport {

 String name;

 HashMap<String, String> params;

 public void setName(String name) {...}

 public void setParam(String param) {...}

 public int doEndTag() {

 request.setAttribute("params", params);

 generateJsp(...);

 JspRuntimeLibrary.include(...);...

 }

 public abstract void generateJsp(...);

}

(d) JSP file

drag.jspgenerate

include

<rc:flex name="drag" param="catalog cake"/>

<rc:applet name="ReserveApplet" param="..."/>

<rc:javascript name="select" param="fruit 0"/>

Figure 5: Implementation of tag handlers for rich
components

of rich clients can commonly use the values of tag
attributes (Requirement 1). The tag handler of the
�rc:richComponent� tag generates a JSP file that is
written in a particular XML-based language of the
corresponding rich client. The tag handler then in-
cludes this generated JSP file to let the rich client’s
tag handler preprocess it. In the case of generating a
combination of HTML and JavaScript code, the tag
handler skips the processes of generating and includ-
ing a JSP file. If the JSP file written in a particular
XML-based language is already prepared, the tag han-
dler skips the process of generating a JSP file and only
performs the process of including a JSP file.

As shown in Fig. 4, the name of the tag handler of
a �rc:flex� tag is specified in a tag library descriptor
file. To process the �rc:flex� tag, FlexTag tag han-
dler is invoked. Tag handler FlexTag first reads the
values of attributes name and param, and then gener-
ates a JSP file, and includes the JSP file (discussed in
Section 4.1 in detail).

3.3 Introduction of abstract tag handler
The tag handlers that generate rich components need
to perform a series of processes such as reading the
values of attributes name and param, generating a JSP
file, and including the generated JSP file. The process
of generating a JSP file is dependent on the type of
rich component. On the other hand, the other pro-
cesses are common among all tag handlers of rich
components. Therefore, instead of writing a tag han-

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 392

(b) FlexTag

(a) JSP page

public class FlexTag extends RichTag {

 public void generateJsp(...) {}

}

(c) drag.jsp

<rc:flex name="drag" param="catalog cake"/>

<%

HashMap params = (HashMap)

request.getAttribute("params");

String catalog = (String)

params.get("catalog");

%>

<mm:mxml><mx:Application

Figure 6: Generation of rich components for Flex

dler for each type of rich client separately, we intro-
duce an abstract tag handler so that we can write tag
handlers in the same interface (Requirement 2).

As shown in Fig. 5, the abstract RichTag class
reads the values of attributes name and param. The
value of attribute param consists of a sequence of a
pair of name and value. Class RichTag stores those
values in variable params of type HashMap with name
as a key. The doEndTag() method invokes an abstract
method generateJsp() to let the tag handler of each
rich component generate its own JSP file. In addition,
it stores the value of variable params in the request ob-
ject so that the generated JSP file can also refer to the
values of attribute param when it is included.

The tag handler of each rich component has only
to implement generateJsp() method because it inherits
the abstract RichTag class. This makes it easy to add a
rich component for a new rich client when it becomes
available (Requirement 3).

4 Rich Component Tag Handlers

4.1 Generation of rich components for Flex
We can generate the Flex rich component shown in
Fig. 1 by writing FlexTag class that inherits ab-
stract RichTag class. Using generateJsp() method, we
may dynamically generate JSP page drag.jsp written
in MXML. However, to make it easier to maintain
drag.jsp, it is better to prepare this JSP page separately
as a file.

Abstract class RichTag stores the value of at-
tribute param of the �rc:flex� tag in the request ob-
ject in advance. Therefore, as shown in Fig. 6(c),
JSP page drag.jsp can receive this value as a HashMap
object. This makes it possible for multiple �rc:flex
name=“drag”� tags to use the same JSP page drag.jsp
to include.

<rc:applet name="ReserveApplet"

param="archive reserve.jar width 420 height 300"/>

<rc:applet name="AnimationApplet"

param="image dog frames 3 width 160 height 160"/>

Figure 7: Example of meeting-room reservation and
animation with JApplet

4.2 Generation of rich components for Ap-
plet

Figure 7 shows an example of definition of Applet rich
components. The upper row of the Web page shows a
Web-based reservation system for meeting rooms, and
the lower row shows the animation of a dog.

Although we can easily define applets using
�applet� tags, we can also define them using
�rc:applet� tags in the same way as we define other
types of rich components. We can specify various
kinds of values in an �applet� tag all together using
attribute param of the �rc:applet� tag.

As shown in Fig. 8, the �rc:applet� tag dynam-
ically generates a JSP file (ReserveApplet.jsp) whose
name is the same as the applet, and then includes this
JSP file.

4.3 Generation of rich components for
JavaScript

Figure 9 shows an example of definition of JavaScript
rich components that display hierarchical pull-down
menus. The upper row shows three hierarchical pull-
down menus for employees, and the lower row shows
four hierarchical pull-down menus for fruit.

In the hierarchical pull-down menus for fruit, for

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 393

<rc:applet name="ReserveApplet"

param="archive reserve.jar width 420 height 300"/>

(a) JSP page

(b) AppletTag

public class AppletTag extends RichTag {

 public void generateJsp(...) {

 pw.print("<jsp:plugin type=\"applet\"

 code=\"" + name + ".class\"" +

 archive() + width() + ... + ">" +

 params() + "</jsp:plugin>");

 }

 private String archive() {

 if (params.containsKey("archive")) {

 String archive = params.get("archive");

 return " archive=\"" + archive + "\"";

}

<jsp:plugin type="applet"

code="ReserveApplet.class"

archive="reserve.jar"

width="420" height="300">

</jsp:plugin>

(c) ReserveApplet.jsp

generate

Figure 8: Generation of rich components for JApplet

example, four menus are displayed in a line, and they
specify the order in which fruits are arranged in the
table below. The menu consists of six menu items
such as “Fruit”, “Price:asc”, “Price:desc”, “Source”,
“Arrival:asc”, and “Arrival:desc”. In the first pull-
down menu, if we choose “Price:desc” that arranges
the fruits in descending order of price, the second pull-
down menu will show only four menu items such as
“Fruit”, “Source”, “Arrival:asc”, and “Arrival:desc”,
because the order of price has already been specified.
If we specify “Arrival:desc” in the second pull-down
menu, the third pull-down menu will show only two
menu items “Fruit” and “Source”.

Using a �rc:javascript name=“selectDef”� tag,
we specify the number of pull-down menus. We also
specify the name of each menu item, and the group
it belongs to using attribute ext of the tag as addi-
tional information. A �rc:javascript name=“select”�
tag defines each pull-down menu displayed in a Web
page.

Hierarchical pull-down menus have only to gen-
erate a combination of HTML and JavaScript code.
Therefore, the generateJsp() method of the tag han-
dler generates HTML and JavaScript code instead of
generating a JSP file. In this case, the tag handler
does not perform its including process. As shown in
Fig. 10, the �rc:javascript name=“selectDef”� tag
generates JavaScript code to operate hierarchical pull-
down menus, and the �rc:javascript name=“select”�
tag generates HTML code to display those hierarchi-
cal pull-down menus.

<rc:javascript name="selectDef" param="fruit 4"

 ext="Fruit, Price:asc Price:desc, ..."/>

<rc:javascript name="select" param="fruit 0"/>

<rc:javascript name="select" param="fruit 1"/>

<rc:javascript name="select" param="fruit 2"/>

<rc:javascript name="select" param="fruit 3"/>

Figure 9: Example of hierarchical pull-down menus
with JavaScript

5 Observation

Some rich clients use a combination of HTML and
JavaScript code to define their rich components, and
other rich clients use particular XML-based languages
such as MXML and LZX. In the method this pa-
per has presented, various kinds of rich compo-
nents can be defined in a uniform interface by us-
ing �rc:richComponent� tags. This makes it possi-
ble to separate the programming of Web applications
from the design of Web pages. This method has in-
troduced an abstract class RichTag to apply the tem-
plate method to constructing the tag handlers of rich
components. This makes it possible to easily add new
rich components to Web pages when the correspond-
ing rich client becomes available. The method en-
ables programmers to easily develop rich component
tags for various kinds of rich clients to prepare useful
rich components, and makes the process of develop-
ing Web applications efficient.

6 Conclusion

This paper proposed rich component tags that en-
able programmers to easily write Web pages that are
displayed by various kinds of rich clients, and de-
scribed their implementation. This method makes
it possible to define various kinds of rich compo-

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 394

<rc:javascript name="selectDef" param="fruit 4"

 ext="Fruit, Price:asc Price:desc, ..."/>

<rc:javascript name="select" param="fruit 0"/>

<rc:javascript name="select" param="fruit 1"/>

<rc:javascript name="select" param="fruit 2"/>

<rc:javascript name="select" param="fruit 3"/>

(b) JavascriptTag

(a) JSP page

public class JavascriptTag extends RichTag {

 public void setExt(String ext) {...}

 public void generateJsp(...) {

 if ("selectDef".equals(name)) {...}

 else if ("select".equals(name)) {...}

 }

}

<script type="text/javascript">

window.onload=createOptions;

........

</script>

<select id="fruit0" name="fruit0"

onchange="changeSelect(0)"></select>

jspWriter.print()

jspWriter.print()

Figure 10: Generation of rich components for
JavaScript

nents in a uniform interface. The tag handlers that
process rich components dynamically generate JSP
pages and include them. Therefore, the recursive
process of �rc:richComponent� tags is possible in
which generated JSP pages are also defined using
�rc:richComponent� tags. We are going to investi-
gate various kinds of applications for rich component
tags.

References:

[1] Adobe Systems Inc.
http://www.adobe.com/products/flash/, 2006.

[2] Adobe Systems Inc.
http://www.adobe.com/products/flex/, 2006.

[3] Laszlo Systems, Inc.
http://www.openlaszlo.org/, 2006.

[4] Michael Brooks. Essentials for Design
Javascript Comprehensive. Prentice Hall, 7
2006.

[5] Edmond Woychowsky. Ajax : Creating Web
Pages with Asynchronous Javascript and Xml.
Prentice Hall, 8 2006.

[6] Sun Microsystems, Inc. : Java
2 Platform Standard Ed. 5.0.
http://java.sun.com/j2se/1.5.0/docs/api/, 2004.

[7] Seung C. Lee and Ashraf I. Shirani. A com-
ponent based methodology for web application
development. Journal of Systems and Software,
Vol. 71, No. 1-2, pp. 177–187, 4 2004.

[8] K.M. Khan and J. Han. Composing security-
aware software. IEEE Software, Vol. 19, No. 1,
pp. 34–41, 2002.

[9] A. Repenning, A. Ioannidou, M. Payton, W. Ye,
and J. Roschelle. Using components for rapid
distributed software development. IEEE Soft-
ware, Vol. 18, No. 2, pp. 38–45, 2001.

[10] J. Hopkins. Component primer. Communica-
tions of the ACM, Vol. 43, No. 10, pp. 27–30, 4
2000.

[11] A. Leff and J.T. Rayfield. Web-application de-
velopment using the model/view/controller de-
sign pattern. pp. 118–127, 9 2001.

[12] Sun Microsystems, Inc. : JavaServer Pages Tech-
nology. http://java.sun.com/products/jsp, 2006.

[13] Steven John Metsker and William C. Wake. De-
sign Patterns in Java. Addison-Wesley, 4 2006.

[14] Iron Speed, Inc. : Iron Speed Designer.
http://www.ironspeed.com/, 2006.

[15] Nasir Al-Darwish. Pagegen: an effective scheme
for dynamic generation of web pages. Informa-
tion and Software Technology, Vol. 45, No. 10,
pp. 651–662, 7 2003.

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 395

