
A Binary Floating-Point Adder with the Signed-Digit Number
Arithmetic

Shugang Wei
Gunma University

Department of Computer Science
Tenjin-cho 1-5-1, Kiryu-shi, Gunma 376-8515

Japan
wei@ja4.cs.gunma-u.ac.jp

Abstract: In a conventional binary floating-point number arithmetic system, two’s complement number represen-
tation is often used to perform addition/subtraction in a floating-point adder. Since the significand of an addition
operand is usually expressed as a sign-magnitude number representation, the swapping operation of two operands
and the carry propagation in the addition will limit the arithmetic speed. In this paper, we introduce a radix-two
signed-digit(SD) number arithmetic to the floating-point number arithmetic. Then the swapping operation is not
required and the carry propagation becomes free for the inner addition. We present an addition circuit architecture
using the SD arithmetic with a normal binary floating-point number representation in both input and output. Effi-
cient SD-binary conversion and normalization circuits are also proposed.

Key–Words: Floating-point number, Signed-digit number, Arithmetic circuit, Binary addition, IEEE standard 754.

1 Introduction

Since fixed-point number systems have certain limi-
tations in the relatively small range of numbers that
can be represented and the possible loss of signifi-
cant digits during computations, floating-point num-
ber systems are often used to manipulate very large
and very small numbers for scientific computation and
digital signal processing[1, 2].

A floating-point number is usually represented as
an exponent part and a significand part, so that the
arithmetic with floating-point numbers is very compli-
cated comparing to that with the fixed-point numbers.
In basic arithmetic operations, the floating-point ad-
dition and subtraction are most complicated ones that
consist of the operations such as exponent manipula-
tion, alignment shifting, addition, normalization and
rounding. A number of adders for the IEEE Standard
754, a binary floating-point data format, have been
presented[1, 3]. However, the swapping operation of
two operands in the ordinary binary number represen-
tation and the carry propagation during the addition of
them will limit the arithmetic operation speed.

It is well known that the carry propagation is
limited to one position during additions of signed-
digit(SD) numbers[4]. The redundant SD number
representation is often used to achieve high-speed
arithmetic[6]. In this paper, we present a new architec-
ture of the floating-point adder by introducing a radix-

two SD number arithmetic. Therefore, the swapping
operation of two operands is not required and the carry
propagation becomes free for the inner addition. We
also present efficient SD-binary conversion and nor-
malization circuits. The design and simulation results
show that the delay time of the proposed floating-point
adder is reduced to 77 % comparing to the conven-
tional one.

2 Addition in Floating-Point Num-
ber System

2.1 IEEE Floating-Point Number System

The floating-point number system has a very large
range of number representations, comparing to the
fixed-point number system with the same wordlength.
Figure 1 shows a 32-bit floating-point data format,
which is well known as “ IEEE standard 754”[4]. The
sign bit is the leading bit and the 8-bit exponent field
precedes the 23-bit significands field. The exponent is
biased by adding 27−1 and the significand is in a sign-
and-magnitude notation. The 1 is hidden in the num-
ber representation, so that the value range expressed
by the significands field is [1, 2). Therefore, the value
of such a floating-point number x is given by the fol-
lowing equation:

x = (−1)sM × be−127, (1)

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 528

fe + biass

Biased
exponent

Significand
M=1.f (the 1 is hidden)

8 bits 23 bits : 32 bits1 bit

Figure 1: IEEE standard floating-point number repre-
sentation.

where (−1)s denotes the sign of x. That is, s = 0 for
positive numbers and s = 1 for negative numbers. b =
2 is the exponent base, and e expresses the exponent.
M = 1.f and f is a pure unsigned fractional number.
Most of addition/subtraction time is for the arithmetic
operations on the significands.

2.2 Conventional Adder Architecture

Let x1 and x2 be two floating-point numbers, as
shown in Fig.1. Since the subtraction can be per-
formed by x1 − x2 = x1 + (−x2), we consider the
addition without loss of generality. When e1 ≥ e2,
the addition can be performed as follows:

x1 + x2 = ((−1)s1M1 + (−1)s2M22−(e1−e2))2e1−bias

To implement the above arithmetic, the following
steps are required for adding two floating-point num-
bers:
(1) Calculate the difference of the two exponents,

d = e1 − e2.

(2) Shift the significand of the smaller number by d bit
positions to the right.
(3) Add the aligned significands and set the expo-
nent of the result equal to the exponent of the larger
operand.
(4) Normalize the resultant significand and adjust the
resultant exponent if necessary.

When x1 < x2 and e1 = e2 specially, the swap-
ping of the operands with a comparison is required,
and a pretty long delay time for the comparison is nec-
essary.

A conventional architecture of floating-point
adder is illustrated in Fig.2[4, 7]. The swapper com-
pares the magnitudes and changes the order of the
significands. The bit-inverter makes the two’s com-
plement for the negative value of the second operand.
Then the aligned binary numbers are added in the bi-
nary adder. The rounding and shifting operations are
performed for the normalization. In the floating-point
addition circuit, swapping two unsigned significands
with a comparison time and adding them with a carry
propagation delay time will limit the arithmetic oper-
ation speed.

���������
	��
��

����	���� �������

���������

��� �������������������

 "!$# "!&%

'�(*),+.-�/
021�3�465�025�7 8:9<;�569<="9?>A@256B

���������
	�� �C�

DFEG(.+IHKJMLON.NIP.H

8:9<;�5

Q,RKSFTIEGUWVXPIH

YF+.-�/
8:9<;�5 021�3�465�025�7 8:9<;�569<="9?>A@256B

Z\[\]

SO^�+_).),P.H

`�a.bI(.NIEG(.c

dfefg�h�i�hjefkml_n�kfi�o

Figure 2: Conventional binary floating-point adder.

3 Floating-Point Adder Using SD
Arithmetic

3.1 Architecture of the Proposed Floating-
Point Adder

We introduce a radix-two SD number arithmetic to
the floating-point addition for getting a shorter delay
time. An architecture of the floating-point adder us-
ing the SD number arithmetic is shown in Fig.3. The
swapping is not required for the addition of two SD
numbers, then the unsigned significands are directly
aligned by shifting in R-shifters. The shift bit number
to right is determined by the values of the exponents
in the circuit Judge Size. Then the guard digits, R
and S, are generated for rounding. After attaching the
signs to the addends in SD Coder, the SD addition of
two SD numbers are performed. The carry propaga-
tion is free for the SD addition, so that a high-speed
floating-point adder may be designed. If the operands
have the same sign, the exponent is increased by 1 and
the SD number is shifted to right. To convert the SD
number into the IEEE standard floating-point data for-
mat, an SD Decoder is used to transfer the SD num-
ber into a binary one, and a properly left-shifting is
performed for the postnormalization. For the SD-to-
binary conversion, a binary addition is performed and
the carry propagation will arises for the binary number
arithmetic. In parallel, the number of shift bit number,

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 529

���������
	��
��

����	���� �������

���������

����� ���!

"�#%$'&)(�*
+-,�.�/10�+-0�2 35476 0 478�4:9<; 01=

>�?A@CBD#)BDEF&'G H)E

?JILKNMDM)BDE

35476 0

	�OPO��1Q-R1����� ?JSDTVUWG:X KNYZHD[)#'G

\]X^?JS)TVUWG B)E�_N>�H)[D#)M)TV#D`

aJ&)(�*
35476 0 +-,�.�/10�+-0�2 35476 0 478�4:9<; 01=

bdcde

?JIgf�H)MDB)E

hjijkml�n�l^ijoqpsr�ojn�t

����	���� �������

?JTV`D#)BDM]X^IdTV`)T�G
KNE�T�G S)YZB'G TV(

>�?u@vB)#DB)E�&]G H)E

�-���<�w�
	�� �wx

Figure 3: Architecture of floating-point adder using
SD arithmetic.

which is required in the following L-shifter, are de-
cided by the circuit Shift-Amount.

When the operands have the same sign, the sign
will be as the output sign; when they have different
signs, the output data sign will be determined by the
calculation result in SD Decoder.

3.2 Sign-Digit Arithmetic

A number x can be represented by a p-digit radix-two
SD number representation as follows:

x = xp−12p−1 + xp−22p−2 + · · ·+ x0,

xi ∈ {−1, 0, 1} (i = 0, 1, · · · , p− 1), (2)

which can be denoted as x = (xp−1, xp−2, · · · ,
x0)SD. The SD number representation has re-
dundancy; for example, 7 may be represented by
(0, 1, 1, 1)SD, (1,−1, 1, 1)SD or (1, 0, 0,−1)SD for
p = 4. By using the redundant number representation,
parallel arithmetic can be achieved without the carry
propagation which occurs during addition in an ordi-
nary binary system. In the SD number representation,
x has a value in the range of [−(2p − 1), 2p − 1]. An
SD adder is shown in Fig.4, performing the following
two steps.

ADD1

x
p-1

y
p-1

x
p-2

y
p-2

ADD2

z
p-1

ADD1

x
0

y
0

ADD2

z
1

ADD1

ADD2

z
0

x
1

y
1

SDFA

c
p-1 c

1
c

0

Figure 4: Block diagram of SD adder.

SD Addition (x + y): Let ci, wi and zi be the inter-
mediate carry, intermediate sum and sum at the ith SD
digit (i = 0, 1, · · · , p−1), respectively. For each digit,
the following two steps are performed.
Add1: When abs(xi) = abs(yi),

(wi, ci) = (0, (xi + yi) div 2);

when abs(xi) 6= abs(yi),

(wi, ci) =





(−(xi + yi), xi + yi) if (xi + yi) and
(xi−1 + yi−1)
have the same sign

(xi + yi, 0) otherwise

Since xi, yi ∈ {−1, 0, 1}, wi, ci ∈ {−1, 0, 1}.
Add2: zi = wi + ci−1. Thus,

z = zp2p + zp−12p−1 + · · ·+ z0

It is always true that 2ci + wi = xi + yi, and
wi and ci−1 do not have the same sign so that zi ∈
{−1, 0, 1}. Thus the carry propagation is limited to
one digit position in an SD adder as shown in Fig.4..

An SD number obtained from the SD addition
should be converted into a binary number, then the
rounding and the normalization is performed. For the
postnormalization, the shift bit number is required.
We can convert the SD number into the binary and
calculate the number of shift bits in parallel. In SD
Decoder, at first the SD number is divided into a posi-
tive and a negative binary number. Then an addition in
the binary number representation is performed, where
the negative number is represented by a two’s com-
plement. If the sign is negative, then the number is
changed by making the complement at every bit.

The shift bit number is obtained directly from the
SD number in parallel with the SD-to-binary conver-
sion. A method similar to a Leading Zero circuit is
applied, performing the following procedure.
Shift Amount: Consider a p-digit SD number, x =
(xp−1, xp−2, · · · , x0)SD. Let t be the shift bit number.

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 530

Table 1: Example of the proposed floating-point addi-
tion.

R-Shifting:
Sig A 1.01000001 R:0,S:0
Sig B aligned 0.01110001 R:1,S:1
SD Coding and ADD1:
Sig ASD 1.01000001 R:0,S:0
Sig BSD aligned 0.01̄1̄1̄0001̄ R:1̄,S :1̄
ADD2: ci 00.01̄000001̄ 0

wi 1.0011̄0000 11̄
Sig A+B 1.01̄11̄0001̄ 11̄
SD Recoding:
Positive(+) 01.00100000 10
Negative(-) 11.10101110 11
Sig (A + B) 00.11001111 01
Normalizatioin:
Sig (A + B)N 1.10011111 Shift 1 bit

t := 0
for i = p-1 downto 0,
begin
if x(i) = 0 then t := t + 1
else if x(i)=x(i-1) <> 0 then exit

else
for j = i-1 downto 0,
if x(i)=-x(j-1)<>0 then t := t + 1

else exit
end

Shift-Amount circuit based on the above procedure is
more complicated than the normal Leading Zero cir-
cuit. However, the delay time may be smaller than that
of SD Decoder circuit.
Example 1: Comsider a simple addition of A and B
having the following binary expressions:

{
A = 23 × 1.01000001
B = −21 × 1.11000111.

After shifting and generating the guard digits, R and
S, the SD number representations for them can be
obtained in SD Coder. Table 1 illustrates the arith-
metic operation process, where 1̄ = −1. The shift
bit number is 1. The round-to-nearest method is used
for the normalization and the final addition result is
A + B = 22 × 1.10011111.

4 On VLSI Implementation

We specify a binary representation for a radix-two
signed-digit ai, that is, ai(1) is the sign and ai(0) is

Table 2: Performance of the proposed floating-point
adder

Area(Gates) Delay time [ns]
Main circuits Binary SD Binary SD
Swapper 118 – 18.93 –
Adder 228 534 26.90 5.93
RS Generator 244 244 8.34 8.34
Rounding 65 – 9.75 –
SD Coder – 24 – 0.79
SD Decoder – 208 – 26.91
Shiftamount – 172 – (24.39)
Total 945 1449 92.90 71.79

the absolute value of ai. Thus, a p-digit radix-two SD
number a is represented by a vector with 2p-bit length.

a = (ap−1, ap−2, · · · , a0)SD

= [ap−1(1)ap−1(0) ap−2(1)ap−2(0)
· · · a0(1)a0(0)] (3)

For example, (1, 0, 0,−1)SD = [01000011]. Using
the binary representation, the arithmetic operations in
functional blocks including the SD arithmetic circuits
are described and simulated. By using VHDL descrip-
tion codes, and the simulation and the logic circuit
synthesis are performed by a synthesis software tool.
In our experiments, the delay time is obtained by the
simulation under the condition of 1µm CMOS gate
array technology.

In Table 2, the design results of the floating-point
adder having IEEE standard data format is shown,
based on the SD arithmetic method. For the perfor-
mance evaluation, a floating-point adder with a binary
arithmetic is also designed for comparing with the
presented one. In the proposed floating-point adder,
the swapper, which is used in the binary adder, is
not required. Moreover, the addition is performed by
the SD adder. Therefore, the delay time of the ad-
dition circuit is reduced by 77 %, comparing to the
binary one. However, the presented floating-point
adder needs about 1.5 times of hardware the binary
one needs.

5 Conclusion

A new architecture of a floating-point adder using the
SD arithmetic has been proposed. Because the swap-
ping operation is not required and the carry propaga-
tion is free in the SD addition, a high-speed floating-

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 531

point adder can be implemented by the presented
method.

The design and simulation results under the con-
dition of 1µm CMOS gate array technology show that
the SD floating-point adder has a shorter delay time
by 77% comparing to that of a conversional floating-
point adder. Our studies also focus on the error analy-
sis of the proposed adder and the applications.

References:

[1] A. R. Omondi,Computer Arithmetic Systems:
Algorithms, Architecture and Implementation,
Prentice Hall, 1994.

[2] L. Wanhammar,DSP Integrated Circuits, Aca-
demic Press, 1999.

[3] “Leading-zero Anticipatory Logic for High-
speed Floating Point Addition”, Technical Re-
port of IEICE DSP95-98 ICD95-147, 1995.

[4] ANSI/IEEE Standard 754-1985 for Binary
Floating-point Arithmetic, IEEE, 1985.

[5] A.avizienis,“Signed-digit number representa-
tions for fast parallel arithmetic”, IRE Trans.
Elect. Comput., EC-10, pp.389-400, 1961.

[6] S.Wei and K.Shimizu,”Residue Arithmetic Cir-
cuits Using a Signed-Digit Number Representa-
tion”, IEEE Proc. of ISCAS 2000, pp.I24-I27,
May 2000.

[7] Woo-Chan Park, “Design of the Floating-
point Adder Supporting the Format Con-
version and the Rounding Operations with
Simultaneous Rounding Scheme”, IEICE
Trans.Inf.&Syst.,Vol.E85-D,No.8, 2002.

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 532

