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Abstract: This paper addresses the problem of designing a network-delay-dependent switching controller that
achieves the H, disturbance-rejection performance under an £, performance representing componentwise input
saturation. To design such controller, this paper first builds up the conditions for set invariance, and then incorpo-
rates these conditions in the synthesis of dynamic state-feedback H ., control. The proposed design conditions are
characterized in terms of linear matrix inequalities with one prescribed scalar.
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1 Introduction

The technologies on multi-accessible communication
networks, such as Ethernet with flexibility, cost ef-
fectiveness, speed improvement, and distributiveness,
have been recently received considerable attention in
the area of networked control systems (NCSs) since
multi-accessible communication networks are very
useful for data transmission linkage in control appli-
cations. However, since the multi-accessibility causes
the communication networks to suffer from random
networked-induced delays that deteriorate the stability
and control performance of closed-loop control sys-
tems, one needs to definitely handle the delays when
implementing a feedback control loop closed through
multi-accessible communication networks. Thus, nu-
merous investigations and research efforts have been
undertaken to deal with the delays (see e.g., [7]-[11],
and references therein).

In more practical application for such systems,
one necessarily needs to address the input saturation
during the control design procedure since every phys-
ical actuator is subject to the saturation that deterio-
rates the stability of the control applications. How-
ever, to the best of our knowledge, there has been yet
no results of taking into account the saturation of ac-
tuators in the process of constructing the NCSs. Of
course, for the traditional point-to-point communica-
tion network, various research results of handling ex-
plicitly the input saturation have been already pub-
lished in the system and control literature, particu-
larly of which several important results of handling di-
rectly the input saturation have recently appeared well
in [1], [4]-[6], and references therein. In this paper,

we shall use the polytopic representation method, pro-
posed first in [4], to handle the input saturation non-
linearity, which allows high gain control to be used for
stabilization.

In order to address explicitly the effects of both
data-transmission delay and loss of data, first, we em-
ploy a reliable transport protocol that guarantees data
delivery and supports that transmitted data have their
time-stamp information. Based on such a protocol,
we propose a discrete-time system over asymmetric
path-delay configurations (SOAP) on the high-speed
networks, which has the same structure as that of [7]
except for the point that a saturator is inserted be-
tween the controller and the communication networks,
depicted in Fig. 1-(a). As mentioned in [7], the
SOAP has two different paths sharing a reliable trans-
port protocol; one path delivers constant-delayed data
to the destination by using the FIFO (First-In-First-
Out) data buffer, and the other path delivers data with
their time-stamp information to the destination. In this
framework, we shall develop a systematic methodol-
ogy for designing an H . control for NCSs subject to
input saturation via a deterministic approach. To this
end, we first propose a dynamic state-feedback quasi-
linear parameter-varying (QLPV) control law depen-
dent on the previous mode which denotes one of sta-
tuses that a switching controller can belong to. Based
the control law, we formulate the conditions for set in-
variance in terms of LMIs with one prescribed scalar.
And then, we use the obtained conditions in construct-
ing a network-delay-dependent H ., controller which
achieves the maximal disturbance rejection.
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Figure 1: (a) The SOAP with a saturating controller. (b) A mode
transition diagram (dmax = 2).

2 Preliminaries

Consider the following linear time-invariant (LTI)
system of the form

z(k+1)
z(k

) =
where z(k) € R", u.(k) € R™ wk) €
RP and z(k) € R? denote the state, the in-
put, the disturbance and the performance output,
respectively. Here, it is assumed that the distur-
bance w(k) is unknown but belongs to W; :=
{weRP | wl(k)w(k) <4, 6§ >0, Vk >0}

Before going ahead, we make the same three as-
sumptions (Al), (A2), and (A3) as did [7]. As men-
tioned in [7], in the down-link (see Fig. 1-(a)), since
the controller does not exactly know when the input
us(k) acts on the plant, we shall force the down-
link delay to be fixed into its bound value dyy, i.e.,
ur(k) = us(k — dar). Contrary to the down-link, in
the up-link (see Fig. 1-(a)), we shall use the real-time
information on the up-link delay sequences delivered
to the controller (time-stamp information). Refer [7]
for the detailed explanation on the proposed SOAP
structure. With the above settings, the resulting sys-
tem model in the controller point of view is given as
follows:

= Az(k) + Byw(k) + Bau,(k),
Cxz(k) + Dyw(k) + Dou,(k), (1)

ik +1) = Az(k) + By w(k) + By us(k), (2)
2(k) = C &(k) + D w(k), (3)

za(k) = E(k) (k) (4)
us(k) = sat(u(k),a), 5)
where (k) = [2T(k) | 2T(k — 1)---2T(k —

dM) ‘ u?(/c — l)uz(kz — dM)]T S Rt, t =
n + (n + m)dy, xq(k) € R™, u(k) € R™ and
4 € R™ denote the augmented state, the delayed

state, the raw control input and the saturation level,
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respectively, and the matrices are defined as

A0 00 BB ]0
I 000 0010
[A|B\|Bo)=] 0 I 00 0] 0|0/, (6
0000 001
00071 0[0]0
C’z[COOODg],[) Dy, (7)

where if z(k — r) is avilable at time k, ®y, is set to
identity matrix, and otherwise, ¥, is set to zero ma-
trix. x4(k) is determined by (4) with the help of the
time-stamp information. By the basic characteristics
of the SOAP, we can determine (29! — 1) different
E(k) for a given dj;. We shall henceforth call each
status corresponding to F(k) a mode, say, m(k). The
m(k) will be expressed as m(k) = (boby - - bq,, )2,
where (-)2 means the binary representation of m(k).
The r-th bit, say, b,, is set to 1 if the r-delayed
state, x(k — r), is available, otherwise, the bit is
set to 0. The mode m(k), hence, belongs to a set
M:={m e R |m=12- .. 2%matl 1]
Besides, based on the second assumption (A2), we
can uniquely determine a set of transitions, say, S,
only if dps is determined: S := {(m(k),m(k — 1)) |
all possible transition pairs yielding (Al) and (A2)
for m(k) e M, m(k —1) € M, Vk}, For exam-
ple, if dp is 1, we have three modes, (10)2,
(01)2, and (11)y, and a set of transitions S =
{(1,1),(1,2),(1,3),(3,1),(3,2),(3,3) }. In the case
of dyy = 2 possible modes and transitions are shown
in Fig. 1(b). One mode may transit to other mode
with no received data, which is represented as the dot-
ted lines; other kinds of transitions are represented as
the solid lines. In this paper, we shall directly handle
the input saturation nonlinearity by using the follow-
ing lemma proposed in [4].

Lemma 1 Let D be the set of m x m diagonal matri-
ces whose diagonal elements are either 1 or 0. Sup-
pose that |v.| < a, for all r = 1,--- ,m, where
v, and u, denote the r-th element of v € R™ and
u € R™, respectively. Then

2 m

Zag Dgu+D v
/=1

satuu

2m
C D ar=1, 9
/=1

where oy > 0 and Dy denote all elements of D, and
D, =1-D,.

Consider a previous mode (PM)-dependent dynamic
quasi-linear parameter varying (QLPV) control law
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which switches itself depending on its previous and
current modes:

ze(k 4+ 1) = Fji(k)z.(k) + Gji(k)E;jz(k), (10)
u(k) = Hjiz(k) + JJZE (k) (11)
subject to

[Fii(k) Gk)) = > aelk) [F G5, (12)

where ay(k) denote the interpolation coefficients at
time k in (9), the subscripts j and i stand for m(k)
and m(k — 1), respectively, and z.(k) € R! denotes
the controller state. In order to use Lemma 1 in repre-
senting the input saturation nonlinearity (5), we shall
employ an auxiliary PM-dependent control input v (k)
as follows:

v(k) = Kjxe(k) + L E;z(k) = Viz(k),  (13)

where Vj; 1= [leEj sz] Thus, if Z(k), for all k£ >
0, belongs to £(V};) defined as

L(Vi):={zeR"| —u<Vuzk) <u}, (14)

then

- Yo

sat (Uj;z(k

where Uj; = [inENj H ]Z] Accordingly, the result-

ing closed-loop system subject to Z(k) € L(V};), for
all £ > 0, can be rewritten as

z(k+1) = Aj(k)z(k) + Bw(k),  (15)
z(k) = Cz(k) + Dw(k), (16)

where the matrices are defined as

2m 2m
= Z ag(k)Af;, Z (k)
/=

= 17 af(k;) Z 07

0 {A (Dngz—i—D Lj) E,
32 (DgHjZ- + D; Kj;)
Ff ’
B"=[Bl 0]',C=[C 0],D=D.

) {DeUji + Dy Vji } & (k)
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3 Main Results

First of all, we shall find the conditions for obtaining
the ellipsoidal sets £(F;) such that, forall k > 0, i €
M and w € W,

P(k, 2(0),

where ¢ (k, (0),w) denotes the state trajectory of the
closed-loop system and £(P;) denote PM-dependent
ellipsoidal sets defined as, for all i € M,

w) € E(P), VE(0) € E(P), (17

EP) ={zeR'|z"TPz <1, P,>0}. (I8

In the following lemma, we present the conditions
for obtaining the ellipsoidal sets £(P;) with the prop-
erty (17).

Lemma?2 Let 6 > 0 be given. Suppose that there
exist 0 < A\ < land P; > 0, i € M, such that, for
all (j,i1) € Sand ¢ € [1,2™],

M P 0 (%)

0<| 0 (1/0)A—-A)l (x) |, (19
AL, B P

E(P;) € L(Vji), (20)

where P; := Pz-_l. Then there exist the ellipsoidal sets
E(P;) such that, fori € M and w € W,

P(k, 2(0), w) € E(R), Vz(0) € E(F). (21

We denote the H,, norm boundedness of the
transfer function from w to z, Ty, as || Tow||co < 7,
i.e., for all nonzero w(k) € Loy,

z(k)[]2 < ¥*[|w(k)]|2, (22)

where the upper bound + is in inverse proportion to
the disturbance rejection capability. In this paper, we
shall solve the following problem of minimizing the
upper bound v so as to construct a PM-dependent dy-
namic QLPV controller which achieves the maximal
disturbance rejection capability:

min vy subject to (19), (20), and (22), (23)

where the conditions (19) and (20) make the state tra-
jectories remain inside £(P, ) C L(Vj;), and thus the
transition of the state Z(k) is always determined by
the closed-loop system (15).

In the following proposition, we propose the
method of designing a PM-dependent H ., controller
via LMI approach.
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Proposition 3 Let 6 > 0 be given. For a prescribed
value 0 < Ay < 1, suppose that there exist X;, X,
\I’?ﬂ, \1’27]'7;, \Ij3,ji: H§2(1,2), in, Lji» and 1" that are
solutions of the following optimization problem:

~* = min~y (24)
subject to
M X (%) (x) (%) (%)
Al A X; () (%) (%)
0< 0 0 pl  (x) (%) |,
Hﬁz(lal) ng’(lﬂ) Xjél XJ (*)
1) M2 B I X
T Lji~] \1’3,]2
0< | (%) X; { 7Fr7‘§ag>
() () X
X (%) ORNORONON
I Xi (x) () (x) (%)
| o 0 L (%) ()
= | IE(L1) T(L2) XGBr X5 (%) (%)
(2,1) 15,(2,2) B I X; (%
. C cX, D 0 o0 I |

where p := (1/0)(1 — A1), and T, denotes the r-th
diagonal element of T,
15,(1,1) := X; A+ Wi , B,
115,(1,2) == X;AX; + X;B> (DoHj; + D; Kj;) Y,*
+ U LB X + Y ELYT
115,(2,1) := A+ By (D¢ Jji + Dy Lj;) E,
115,(2,2) := AX; + By (DyW3j; + Dy Vs j5)
Ui ji = X;Bs (Do Jji + D; Lyj;) + ;G
Uy ji = Jji B X + Hy Y
W i = Li E; X + K Y,

Then closed-loop system is asymptotically stable
in the absence of disturbances, and ||z(k)||2 <
v*||w(k)||2 holds in the presence of disturbances. g

4 Numerical Example

To verify the performance of the proposed control al-
gorithm, we consider a discrete linear time-invariant
(LTT) plant model (1) with the following system ma-
trices:

1.0 05| 05 0.5

[A By Bg}:
03 06] 10| 0.2

1.0 —0.5‘ 0.1‘ 1.0
C| D, | D,
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Table 1: Disturbance rejection capability

dp U ~* U ¥
0 1 1.3641 3 1.2505
1 1 1.4723 3 1.4343
2 1 2.6027 3 1.8046

For 6 = 0.6 and @ = 1 (or u = 3), we solve the opti-
mization problem in Proposition 3 to obtain the upper
bound v* where the prescribed value \; is tuned be-
tween 0 and 1. Simulations are performed at various
dps values from dp; = 0 to dps = 2, where random
delay sequences are generated with the same method
as did in [7].

5 Concluding Remarks

In this paper, we addressed the problem of designing
an H control for networked control systems (NCSs)
with the effects of both the network-induced delay
and the input saturation. To design such control, we
first found the conditions for set invariance, charac-
terized by LMIs with one prescribed scalar, and then
used these conditions for designing a dynamic state-
feedback H, control dependent on previous mode.
We verified the performance of the proposed control
algorithm via a numerical example.
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