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Abstract: - The Selective Harmonic Elimination PWM (SHEPWM) based on Walsh transform converters 
nonlinear transcendental equations in the Fourier domain to linear algebraic ones. Under appropriate initial 
condition, the piecewise linear relation between fundamental voltage amplitude and switching angles is 
obtained, so voltage regulation and harmonic elimination can be realized online. Thus, the technique highly suits 
to the inverter of dynamic voltage restorer (DVR). In the paper, Walsh transform, construction and solution of 
SHE equations in Walsh domain are introduced. The sameness and the difference between switch angles 
distribution of SHEPWM and of Centroid PWM (CPWM) are summarized, and, according to the relationship 
between both PWM modes, a new method to solve SHE equation in Walsh domain is proposed. In contrast to 
conventional ones, the new method effectively reduces blindness of searching initial switch angles in the course 
of SHE equation solution and improves computation efficiency. The experimental result of 200kVA DVR using 
SHEPWM, which indicates that its inverter can effectively restrain all the harmonics and has good dynamic 
performance in all the range of output voltage, proves feasibility and validity of the proposed method.  
 
Key-Words: - Dynamic Voltage Restorer, Inverter, PWM, Selective Harmonic Elimination PWM, Centriod 
PWM, Walsh function 
 
1   Introduction 

Dynamic voltage restorer (DVR) is an equipment 
used to compensate for the dynamic power quality 
problems such as voltage sag and swell, whose core 
is a controllable voltage source inverter installed in 
power system in series[1]. As the executor of 
compensation command, DVR inverter influences 
the performance of DVR in great degree and it should 
fleetly regulate output voltage at any moment and 
keep enough low total harmonic distortion (THD) in 
the whole range of output voltage. 
     Pulse width modulation (PWM) mode directly 
influences even decides the performance of an 
inverter. Of various PWM modes, Sine PWM 
(SPWM) is one most frequently used in constant 
voltage & constant frequency (CVCF) inverter. 
However, when an inverter, controlled by SPWM, 
varies its output voltage amplitude in a wide range, 
the THD of its output voltage will vary evidently: the 
lower voltage amplitude is, the higher the THD. 
While SHEPWM can make the inverter keep a 
preconcerted THD, no matter how its output voltage 
varies. In addition, at the same switch frequency, the 
inverter controlled by SHPWM can raise the 
frequency of the lowest order of harmonic higher by 
33%~35% than the one controlled by SPWM, which 

can diminish parameters and size of the filter, thereby 
raising dynamic performance of the inverter. Thus, 
for DVR inverter, SHEPWM is a better PWM mode 
than SPWM[2,3]. 

Now, research on SHEPWM mainly  concentrates  
on SHEPWM based on Fourier transform, whose 
biggest obstacle lies in that: the relationship between 
the amplitude of harmonics of output voltage and 
switch angles is depicted by nonlinear transcendental 
equations so that it difficult to solve the equations 
online. As a result, in project practice, the equation is 
solved off-line and many groups of data are saved to 
realize voltage regulation, which not only wastes 
storage space but reduces flexibility of the system[4]. 

Asumadu and Hoft proposed SHEPWM based on 
Walsh transform in [6], which converters nonlinear 
transcendental equations in the Fourier domain to 
linear algebraic ones so as to obtain piecewise linear 
relation between fundamental voltage amplitude and 
switching angles. [7]~[9] improved the computing 
method of Walsh coefficient on the basis of [6]. But, 
all literatures above mentioned gave initial switching 
angles distribution mode relying on experiences and 
were short of quantitative basis in the course of 
solving SHE equations.  

The paper proposes a new initialization method to 
solving SHE equation that based on CPWM
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 technique, which evidently improves computation 
efficiency. The construction and solution of SHE 
equations are illustrated by an unipolar inverter of 
200kVA DVR.   
 
 
2   Walsh Functions and Walsh series 

Walsh functions, one class of piecewise constant 
basis functions, are introduced by Walsh in 1923[4]. 
These functions form an ordered set of rectangular 
waveforms taking only two amplitude values: 1 and 
-1, over one normalized frequency period. Walsh 
functions form a complete or orthogonal set, hence, 
they can be used to represent signals in the same way 
as the Fourier series. There are three ways of ordering 
the Walsh functions (natural, dyadic and sequency 
ordering) depending on the method to generate them. 
Sequency-ordered Walsh functions, which are 
chosen in the paper, are arranged in ascending order 
of zero crossings. Sequency is defined as one half the 
number of zero crossings over the unit interval [0, 1] 
and is used as a measure of generalized frequency of 
waveforms[5]. 

Walsh functions are either symmetrical with 
respect to their point and are called CAL functions, or 
asymmetrical and are called SAL functions 
expressed as followed: 
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Similarly to the Fourier series representation, the 
Walsh series representation of a time function that is 
absolutely integrable in [0, 1] can be defined as: 
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where  is the coefficient of the Walsh function 
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For the discrete case, the integral of (4) can be 
approximated by a summation expression as: 
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The discrete Walsh series representation of a 
time function can be easily obtained:  

∑
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In Eq. (5) and (6),  is the discrete 
Walsh function corresponding to ,  is 

the ith  sampled value of  obtained by sampling 
  times during the interval [0,1], and  is an 

integer power of 2, the greater  the number given, the 
smaller the mean-square error between the desired 
waveform and the actual. Chen and Sun

),( imWal
),( tmWal )(if

)(tf
)(tf N N

[12] proposed 
“domain-term”[12] to choose the for synthesizing a 
waveform if reasonable error is accepted

N
[7,8]. 

 
 
3 Inverter SHEPWM Model Based on 
Walsh Transform 
3.1 SHE Equation in Walsh Domain[6~9]

The paper takes uniploar single phase inverter 
used in past experiment as research object. A typical 
output voltage waveform of the inverter is shown in 
Fig.1 in which one quarter period has M switching 
angles. These switching angles Mααα ,,1 ,2 ⋅⋅⋅  are 
used to eliminate some given lower order harmonics 
and control the fundamental amplitude of the inverter 
output voltage. 

 
Fig.1 PWM waveform of unipolar inverter 

The discrete Walsh series expression of the 
output voltage waveform function  illustrated 
by Fig.1 is: 

)(tf
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where Walsh coefficient is determined by  34 −nW
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Based on the relationship between the Fourier 
series and the Walsh series, the fundamental and 
every order of harmonics of output voltage can be 
expressed in Walsh domain as follow: 
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where 41 NN = ,  is the amplitude of the 

harmonic,  is Walsh-Fourier 
)(kmU

thk 34,12 −− nKB
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transformation coefficient which can be calculated 
directly from the equation derived by Siemens and 
Kitai[10] and  is the Walsh coefficient . 34 −nW

Walsh coefficient  can be obtained on the 
grounds of Eq. (8). Assumed that the inverter DC 
input voltage and there are 

34 −nW

1=dcU M  switching 
angles in a quarter of  the period of waveform 
function, each period [0,1] is averagely divided  
into sbuintervals and a quarter ones. 
Considering 

N 1N
M  angles Mααα ,,, 21 ⋅⋅⋅  in the 

corresponding subintervals , namely Mlll ...,, 21
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where παα 2ii =′ , Walsh coefficent  can 
be derived as[]  
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Substituting Eq. (13) into Eq. (9), the linear 

equations between switching angles and every 
orders of harmonics amplitude can be obtained: 

[ ] [ ][ ][ ] [ ][ ] [ ][ ] [ ]QPDBCBU +′=+′= αα      (14) 
Let the amplitudes of harmonics chosen to be 

eliminated are zero, the linear relation between 
switching can be obtained: 

1.i i ik U cα = + 1,2,...,i M=,                               (15) 
Accoring to the angles variations with Eq.(10), 

the range of fundamental voltage for the  angle 
can be gained as , so the range of 
the fundamental voltage for all the angles must have 
a common range as followe: 
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3.2 Production of initial switching angles[11] 

Before construction and solution of SHE 
equations, actual distribution mode of M  angles in 
first quarter is unknown. To construct SHE equations, 
a set of initial swithcing angles must be given in 
advance. Comparing with tranditional Newtown 
iteration, SHE equation in Walsh domain is less 
sensitive to initial condition, but, if the discrepancy 
between actual swithcing angles and given ones 
exceeds a certain degree, in Eq.(16) will be an 
empty set, meaning that the equations have no 
solution and a new initial condition have to be given.  

CV

It is discovered by research that, producing initial 
switching angles based on Centriod PWM (CPWM) 
is feasible and efficient.  

CPWM, a new rough selective harmonic 
elimination PWM mode, is simple and can be 
realized easily. The procedure to gain the switching 
angles of CPWM can be summarized as follows: 

 The first step is to apply the equal areas method 
which divides the half period of a sinusoidal wave 
whose peak voltage is  into  time sections. The 

area of the  sinusoidal section is evaluated by  
pV n

thn
)cos(cos 1 nnpn VA ββ −⋅= −                   (17) 

where nβ and 1−nβ  are the limits of the sinusoidal 

section. Secondly, the centroid of the  sinusoidal 
section is computed, whose horizontal coordinate is 
expressed as 

thn
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                                                                       (18)   
Thridly, a rectangular pulse [ nn 212 ,αα − ] is 
constructed in  sinusoidal section,  whose peak 
voltage and area are equal to ones of the 
sinusoidal section and let 

thn

              
2

212 nn
nx
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= −                             (19) 

Then, the locations of switching angles, which 
define the commutation interval [ nn 212 ,αα − ], are 
established by the following equations: 
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where  is the modulation ratio of the inverter. m
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CPWM and SHEPWM, if the number of their 
switching angles is equal, can restrian or 
eliminate  the same orders of harmonics despite 
differnce of restrianing degree, which means 
their switching angles distribution discrpancy is 
small.  It’s discovered by virtue of a great deal of 
computation and comparison that the bigger the 
modulation ratio is, the smaller switching angles 
distribution discrpancy of both PWM modes.  
Let  and  represent 
switching angles of the first quarter in the 
CPWM pulses and SHEPWM pulses, 
respectively. Note  and 

C
M

CC ααα ,..., 21
S
M

SS ααα ,..., 21

C
i

S
ii ααα −=Δ

Nl i
i ⋅

Δ
=Δ

π
α

2
, where i  is the sequence number 

of angles, is the number of subintervals in a 
period. Under the circumstances that modulation 
ratio  ，  

N

1≈m 484 ≤≤ M and  appropriate 
computation accuracy is guaranteed, if M is even 
number, 1

max
≈Δ il ; if M  is odd number, 

2
max

≈Δ il . And, change of  with angle 

sequence number i is illustrated as Table 1 and 2. 
ilΔ

Table 1 Change of  with angle sequence number 
(

ilΔ
M is odd) 

2
3−

≤
Mi  

2
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=
Mi  

2
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≥
Mi  

0>Δli  0≈Δli  0<Δli  

Table 2 Change of  with angle sequence number 
(

ilΔ
M is even) 

Mi <

 
2

=
Mi

 
2

>
Mi

 
i =
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≈Δ il
 

≈Δ il
or 

<Δ il

 

Δ il
 

According to the case above mentioned, the 
switching angles of CPWM on the condition that 

, after amended referring to the comparison 
relation between both PWM modes denoted by Table 
1 and Table 2, can act as initial switching angles of 
SHEPWM based on Walsh transform. Generally, 
efficent solution of SHE equation can be obtained 

under the initial condition. In case of solving failure, 
amend the switching angles of CPWM accoring to 
Table 1 and 2 once more and solve the SHE equation 
again until that efficient solution is obtained. 

1≈m

 
  

                                                                                           
4 Application of SHEPWM in 200kVA 
DVR Inverter 

DVR in the paper, used in 220V/380V grid, is 
composed of three single phase full-bridge inverter. 
Single line circuit diagram of DVR connected with 
power system is shown in Fig.2. DC input voltage of 
each inverter is 330V and rated capacity is 70kVA. 
Synthetically considering capacity, filter design and 
other factors, 31 and below orders of harmonics are 
to be eliminated, thus, the number of switching 
angles in a quarter 16=M  . 

 
Fig.2. Single line circuit diagram of DVR connected 

with power system 

In order to ensure computing accuracy, according 
to “domain-term”[12], the period [0, 1] is divided in 
256 subintervals. The procedure to obtain the 
solutions of switching angles is realized as follows: 

Firstly, calculate and produce 256256×  
dimensions Walsh functions set; secondly, calculate 

6416×  dimensions Fourier-Walsh transform matrix 
[ ]; thirdly, let modulation ratio34,12 −− nKB 95.0=m , 
produce initial switching angles according the 
method mentioned in last section, and convert them 
to the series number of subintervals as follows: 

7，8，13，15，19，23，26，31，33，39，40，
47，48，55，56，64. 

Then, according to Eq.(9)~Eq.(14), switching 
angles coefficient matrix [P] and constant matrix [Q] 
can be gained as Table 3. In the end, the piecewise 
linear relation between switching and fundamental 
voltage amplitude can be obtained, part of which is 
illustrated as Table 4, where k  is proportion 
coefficient and is constant. c
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Table 3 Switching angles coefficient matrix and constant matrix 
P Q 

−1.270 8 1.464 3 −2.416 0 2.787 3 −3.508 8 4.196 6 −4.686 3 5.444 7 −5.725 7 6.483 5 −6.596 5 7.273 2 −7.352 7 7.783 3 −7.826 3 7.999 2 −0.505 4
−3.683 5 4.195 8 −6.365 3 7.007 0 −7.824 8 7.968 7 −7.624 7 6.244 5 −5.443 6 2.415 5 −1.848 0 −2.227 7 2.786 7 −6.120 0 6.482 2 −7.992 8 2.205 6 
−5.722 3 6.362 7 −7.989 6 7.821 6 −6.117 5 2.968 7 −0.098 1 −4.523 0 5.989 3 −7.994 4 7.922 2 −4.359 9 3.506 7 3.150 0 −4.025 8 7.979 9 −1.818 7
−7.180 6 7.674 0 −6.6976 4.838 1 0.294 1 −5.292 8 7.555 6 −6.903 3 5.144 3 2.599 3 −3.852 7 7.917 5 −7.617 1 0.490 0 0.880 7 −7.960 7 1.720 2 
−7.911 1 7.954 3 −2.964 5 −0.489 6 6.4705 −7.720 1 4.8342 3.501 8 −6.233 2 6.353 8 −5.140 2 −5.980 9 6.994 3 −4.020 1 2.411 1 7.935 1 −1.769 2
−7.841 0 7.167 6 1.842 9 −5.570 1 7.6601 −1.651 9 −4.512 1 7.405 5 −4.829 4 −6.576 7 7.541 9 −0.097 9 −2.032 7 6.685 5 −5.283 2 −7.903 2 1.870 6 
−6.978 9 5.421 7 5.9677 −7.936 7 2.958 0 6.219 4 −7.650 9 −2.405 8 6.456 2 −2.218 7 −0.293 2 6.095 4 −4.178 9 −7.917 6 7.242 5 7.865 0 −2.138 7
−5.414 1 2.953 8 7.906 4 −6.447 1 −4.005 6 7.232 3 −0.292 8 −7.739 6 4.500 3 7.949 5 −7.311 5 −7.853 9 7.782 4 7.456 4 −7.954 3 −7.820 5 2.073 0 
−3.307 3 0.097 5 6.957 8 −1.835 1 −7.869 8 0.292 3 7.444 4 1.261 7 −6.657 3 −2.767 2 5.546 6 4.166 3 −6.549 0 −5.405 4 7.299 7 7.769 9 −1.997 9
−0.873 8 −2.762 2 3.4772 3.651 0 −5.674 1 −6.945 2 4.953 7 7.898 5 −4.158 8 −6.189 5 3.301 3 2.394 2 1.259 4 2.208 0 −5.395 6 −7.713 2 2.206 8 
1.638 6 −5.240 9 −1.256 8 7.346 1 0.872 0 −6.523 9 −4.314 5 −0.097 1 6.835 5 6.631 8 −7.896 9 −7.271 8 4.790 6 1.448 2 2.573 8 7.650 5 −2.277 8
3.975 0 −7.007 2 −5.513 1 7.464 8 6.720 8 1.062 4 −7.633 5 −7.879 3 3.806 5 2.012 0 2.384 1 7.094 3 −7.846 1 −4.780 0 0.677 3 −7.581 8 2.822 4 
5.899 5 −7.827 1 −7.742 0 3.965 4 7.3816 7.446 7 −0.482 9 −1.059 8 −6.990 2 −7.860 3 6.148 4 −2.007 1 6.025 8 7.077 1 −3.797 2 7.507 4 −3.000 8
7.219 1 −7.595 0 −7.141 0 −1.437 7 2.3721 5.621 7 7.292 9 7.684 1 −3.445 1 2.916 5 −6.786 0 −4.443 5 −0.481 6 −7.853 8 6.250 8 −7.427 2 2.298 3 
7.803 3 −6.347 7 −3.943 8 −6.114 9 −4.430 9 −2.365 4 5.042 6 2.181 4 7.120 8 5.992 9 −1.244 2 7.784 5 −5.330 6 6.952 2 −7.620 3 7.341 4 −3.387 6
7.597 1 −4.258 1 0.669 9 −7.803 1 −7.793 7 −7.709 3 −4.096 2 −7.319 1 3.076 5 −6.647 7 7.639 1 −5.720 9 7.807 8 −4.574 2 7.676 5 −7.250 2 3.109 9 

Table 4   First order coefficient and constant of each voltage section 
voltage 0.395~0.467 0.468~0.550 0.551~0.630 0.631~0.698 0.699~0.795 0.796~0.896 0.897~0.945 0.946~1.000 
section k  c  k  c  k  c  k  c  k  c  k  c  k  c  k  c  

1α  -2.216 11.34 -2.312 11.38 -2.417 11.44 -0.8333 10.25 1.174 10.48 -1.311 10.59 -2.151 11.34 -2.722 11.88 

2α  -0.4009 11.37 -0.5342 11.43 -0.6789 11.51 0.8429 10.37 0.4029 10.68 0.2261 10.81 -0.8756 11.80 -1.615 12.50 

3α  -3.203 21.53 -3.666 21.75 -4.168 22.03 -2.335 21.06 -3.019 21.54 -3.282 21.74 -5.365 23.62 -6.583 24.76 

4α  0.4061 21.61 -0.1221 21.85 -0.6944 22.17 1.088 21.25 0.1613 21.89 -0.1860 22.16 -3.511 25.17 -5.267 26.81 

5α  -3.960 32.10 -4.517 32.35 -5.118 32.69 -3.406 31.67 -4.688 32.56 -5.115 32.89 -6.704 34.28 -8.313 35.79 

6α  1.404 32.18 0.6948 32.50 -0.0653 32.93 2.140 31.60 0.0299 33.05 -0.5705 33.52 -2.770 35.41 -5.133 37.62 

7α  -4.321 42.49 -5.215 42.90 -6.141 43.42 -5.389 42.98 -6.137 43.53 -6.844 44.09 -8.791 45.78 -11.40 48.23 

8α  3.261 42.26 1.817 42.93 0.4297 43.70 0.9870 43.39 0.0927 44.10 -1.053 44.99 -4.501 48.03 -9.459 52.67 

9α  -4.667 52.88 -4.647 52.84 -6.832 54.04 -6.616 53.94 -7.104 54.31 -8.498 55.39 -11.82 58.33 -17.57 63.72 

10α  3.253 53.10 3.894 52.76 1.440 54.14 1.312 54.25 2.337 53.52 -1.731 56.68 -9.640 63.82 -11.05 65.17 

11α  -5.409 63.61 -6.365 64.03 -6.366 64.06 -6.981 64.48 -7.116 64.56 -10.03 66.83 -17.88 73.89 -18.74 74.73 

12α  4.525 63.46 2.645 64.30 3.654 63.75 4.164 63.44 1.063 65.55 1.765 65.03 -2.889 68.73 -18.40 83.37 

13α  -6.402 74.55 -6.532 74.62 -6.969 74.88 -5.655 74.06 -8.340 75.92 -8.335 75.94 -12.72 79.45 -26.95 92.88 

14α  3.824 74.53 4.652 74.19 2.653 75.34 3.263 74.96 4.480 74.17 -1.259 78.77 1.559 76.32 -8.758 85.53 

15α  -4.794 84.44 -6.250 85.13 -7.085 85.62 -6.780 85.43 -6.027 84.96 -11.29 89.16 -9.000 87.17 -18.93 96.03 

16α  5.899 84.43 4.592 85.04 5.310 84.63 5.368 84.60 4.998 84.88 5.275 84.66 5.396 84.56 5.681 84.29 

 
5   Experimental Result  

The inverter is controlled by TMS320LF2407A 
DSP processor. When grid voltage fluctuates in the 
range of 0.1~1.5 times of rating, after compensated 
by DVR, the THD of load voltage is below 2.1%. 
With inductive character load ( 75.0cos =ϕ ), when 
modulation ratio  and , the THD of 
inverter output voltage is 3.1% and 1.7%, 
respectively. The waveforms and spectrums are 
illustrated as Fig.3. Fig.4 denotes two transient cases: 
modulation ratio change abruptly from 0 to 0.5 and 
form 0.2 to 0.75. 

1.0=m 9.0=m

Experimental results indicate that waveform 
quality of the output voltage of inverter controlled by 
SHEPWM   is good and THD is low in all the range 
of output voltage, though the switching frequency is 

low. In addition, the inverter has comparatively high 
response speed. 
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Fig.3. Output voltage waveform and 

its frequency spectrum 

 

 
Fig.4. Two transient voltage 

waveform 

 
 

6   Conclusion  
(1) SHEPWM base on Walsh transform avoids 

solving nonlinear transcendental equations and can 
obtain piecewise linear relation between fundamental 
voltage amplitude and switching angles. 

(2) The initialization based on CPWM technique 
effectively reduces blindness of searching initial 
switch angles in the course of SHE equation solution 
and improves computation efficiency. 

(3) Experimental results indicate that SHEPWM 
based on Walsh transform has strong ability to 

eliminate harmonic and good dynamic performance 
in full range of output voltage. 
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