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Abstract:- A scale-invariant statistical theory of turbulence is described.  The modified and invariant form of the 
equation of motion is then solved at the scale of eddy-dynamics, cluster-dynamics, and molecular-dynamics to reveal 
the internal structure of turbulent boundary layer over a flat plate.  The predicted velocity profile is found to be in 
good agreement with the large body of experimental data reported in the literature.  The results suggest that the 
classical logarithmic law of the wall should be modified.  Also, based on an invariant definition of kinematic 
viscosity, a scale invariant definition of Reynolds number x x x 1 xRe L w / v 1β β β β− β−= λ  is presented. 
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1 Introduction 
The truly universal character of turbulent phenomena 
from the very small scales of stochastic quantum fields 
[1-16] to the intermediate and exceedingly large scales 
of classical hydrodynamics and cosmology [17-26] 
resulted in recent introduction of a scale-invariant 
model of statistical mechanics and its application to the 
field of thermodynamics [27].  Following the classical 
methods, the implications of the model to the study of 
transport phenomena and the invariant forms of 
conservation equations in reactive fields have also been 
addressed [28, 29].   
 As two examples of the exact solutions of the 
modified form of the equation of motion, the classical 
problems of two-dimensional and axi-symmetric 
laminar [30] and turbulent [31] jets were recently 
investigated.  According to the theory, the solutions for 
turbulent jets at LED scale were identical to those for 
laminar jets at the smaller scale of LCD (Fig.1). A 
close agreement was found between the predicted 
turbulent velocity profiles and the experimental data 
without any adjustable parameters.   
 In another recent study [32], following Blasius 
[33], the modified form of the equation of motion was 
solved for the classical problem of laminar flow over a 
flat plate.  The predicted velocity profile was found to 
be in close agreement with the early experimental data 
of Nikuradse [34] and in excellent agreement with the 
more recent experimental data of Dhawan [35]. 
 

 
 In the present study, the implications of the scale 
invariant model of statistical mechanics to the 
statistical theory of turbulence are further examined.  
Also, the problem of turbulent flow over a flat plate 
will be investigated and it will be shown that the 
analytical solution of the modified equation of motion 
closely agree with the large body of experimental data 
available in the literature. The results suggest that the 
logarithmic law of the wall should be modified. 
 
2 Scale Invariant Forms of the 
Conservation Equations for Reactive 
Fields 
Following the classical methods [36-38], the invariant 
definitions of the density ρβ, and the velocity of atom 
uβ, element vβ, and system wβ at the scale β are given as 
[27]  
 

ρ n m m f duβ β β β β β= = ∫      ,        (1) 1β β
=u v

−

 
1m f d−

β β β β β β
= ρ ∫v u u

          
  ,        (2) 1β β+

=w v
 
The scale-invariant model of statistical mechanics for 
equilibrium fields of … -, eddy-, cluster-, molecular-, 
and atomic-dynamics at the scale β = .., e, c, m, a,...  
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Fig.1 Hierarchy of statistical fields for equilibrium 
eddy-, cluster-, and molecular-dynamic scales and 
the associated laminar flow fields. 
 
and the corresponding non-equilibrium laminar flow 
fields are schematically shown in Fig.1.  Each 
statistical field, described by a distribution function 
fβ(uβ) = fβ(rβ, uβ, tβ) drβduβ, defines a "system" that is 
composed of an ensemble of "elements", each element 
is composed of an ensemble of small particles viewed 
as point-mass "atoms".  The element (system) of the 
smaller scale (β) becomes the atom (element) of the 
larger scale (β+1). The characteristic lengths 
associated with the “atoms”, the elements, and the 
system are (lβ = λβ−1, λβ, Lβ = λβ+1) where λβ = <l2

β>1/2 is 
the cluster length that is also equal to the mean-free-
path of the “atoms” [28].   
    The invariant definitions of the peculiar  and the 
diffusion velocities have been introduced as [27]  
 

β β β
′ = −V u v     ,      1β β β β+

′= − =V v w V   (3) 
 

For the equilibrium statistical fields shown on the left 
side of Fig.1, fβ(uβ) will be the Maxwell-Boltzmann 
distribution function.  
    Following the classical methods [36-38], the scale-
invariant forms of mass, thermal energy and linear 
momentum conservation equations at scale β are 
written as [29] 
 

( )β
β β β

ρ
ρ

t

∂
+

∂
v∇. = Ω  (4) 

 

( )β
β β

ε
ε 0

t

∂
+

∂
v∇. =  (5) 

 

( )β
β β βt

∂
+ = −

∂

p
p v P∇. ∇.  (6) 

 

that involve the volumetric density of thermal energy 
ρ hβ β βε =  and linear momentum ρβ β β=p v .  Also, 

βΩ  is the chemical reaction rate and hβ is the absolute 
enthalpy [28]. 
    The local velocity  in (4)-(6) is expressed in 

terms of the convective  and the diffusive 
βv

β β= 〈 〉w v

βV  velocities [28] 
 

gβ β β= +v w V    ,    g D ln( )β β β= − ρV ∇  (7a) 

tgβ β β= +v w V    ,    tg ln( )β β β= −α εV ∇  (7b) 

hgβ β β= +v w V   ,    hg ln( )β β β= −νV ∇ p  (7c) 
 

where (Vβg, Vβtg, Vβhg) are respectively the diffusive, 
the thermo-diffusive, and the linear hydro-diffusive 
velocities.  For unity Schmidt and Prandtl numbers, 
one may express 
 

tg g tβ β β= +V V V        ,    t ln(h )β β β= −αV ∇  (8) 
 

hg g hβ β β= +V V V       ,    h ln( )β β β= −νV ∇ v  (9) 
 

that involve the thermal Vβt, and linear hydrodynamic 
Vβh diffusion velocities.  Since for an ideal gas hβ = 
cpβTβ, when cpβ is constant and T = Tβ, (8) reduces to 
the Fourier law of heat conduction  
 

tρ h κ Τβ β β β β= = −q V ∇  (10) 

where βκ  and p/( c )β β β βα = κ ρ  are the thermal 
conductivity and diffusivity.  Similarly, (9) may be 
identified as the shear stress associated with diffusional 
flux of linear momentum and expressed by the 
generalized Newton law of viscosity [28] 
 

ij j ij h j iρ µ /β β β β β β= = − ∂ ∂τ v V v x  (11) 
 

 Substitutions from (7a)-(7c) into (4)-(6), 
neglecting the cross-diffusion terms and assuming 
constant transport coefficients with Sc Pr 1β β= = , 
result in [29]  
 

2D
t
β

β β β β β

∂ρ
ρ − ∇ ρ = Ω

∂
+ w .∇  (12) 

 

2
p

T
T T h /( c

t
β )β β β β β β β β

∂
− α ∇ = − Ω ρ

∂
+ w .∇ 

 
(13) 

 

2 p

t ρ
β β β β

β β β β

β β

∂ Ω
− ν ∇ = − −

∂ ρ

v v
+ w v v

∇
.∇  (14) 
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    An important feature of the modified equation of 
motion (14) is that it is linear since it involves a 
convective velocity that is different from the local 

fluid velocity . Because the convective velocity 

is not locally defined it cannot occur in differential 
form within the conservation equations [28].  To 
determine , one needs to go to the next higher 

scale (β+1) where =  becomes a local 
velocity.  However, at this new scale one usually 
encounters yet another convective velocity 

which is not known, thus requiring consideration 

of the higher scale (β+2). This unending chain 
constitutes the closure problem of the statistical 
theory of turbulence schematically shown in Fig.1. 

βw

βv

βw

βw

βw 1β+v

1β+w

 
3 Connections between the Modified 
Form of the Equation of Motion and the 
Navier-Stokes Equation  
The original form of the Navier-Stokes equation with 
constant coefficients is given as [36, 37] 
 

2 1
P

t 3
∂

ρ ρ = − + µ∇ + µ
∂

v
+ v v v v.∇ ∇ ∇ ∇. ( )

ii

 (15) 
 

The stress P in (15) is not the thermodynamic pressure 
p but rather it is defined in terms of the total stress 
tensor  and is known as the mechanical 
pressure  [39] 

ij ij ijT p− δ + τ=

 

m iiP (1/ 3)T p (1/ 3)= − = − τ  (16) 

 

Since the normal viscous stress is given by (11) 
as , the gradient of 
(16) gives 

ii i ii(1/ 3) (1/ 3) (1/ 3)τ = ρ = − µv V v∇.

 

m

1 1
P P ( ) p (

3 3
= = µ = + µv v∇ ∇ ∇ ∇. ∇ ∇ ∇. )  (17) 

 

Substituting from (17) into (15), the Navier-Stokes 
equation assumes the form 
 

2 p/
t

∂
− ν∇ = − ρ

∂

v
+ v v v.∇ ∇  (18) 

 

that is almost identical to (14) with  except that 
in (14) the convective velocity is different from the 
local velocity .  However, because (18) includes a 

diffusion term and wβ and  are related by (7c) 

as

0βΩ =

βv

βv

β β β
= +v w V , it is clear that (18) should in fact be 

written as (14). 

4 Perspectives on a Scale Invariant 
Statistical Theory of Turbulence  
According to Fig.1, and in harmony with 
Richardson's well known rhyme about big and little 
eddies [23], the "atom" of the statistical field of 
equilibrium eddy-dynamics EED (J+1) is the 
turbulent eddy, that is considered to be composed of a 
large number of molecular-clusters and hence may be 
called a super-cluster.  It is emphasized that the 
hierarchical model of turbulence being presented 
(Fig.1) is different from the classical cascade models 
according to which larger eddies are considered to be 
composed of successively smaller eddies.  According 
to the present model, the element of the statistical 
field of EED at the scale (j+1) is considered to be 
composed of an entirely new statistical field of ECD 
at the smaller scale (j) as shown in Fig.1. 

4.1 The Nature of Brownian Motions 
According to Fig.1, the statistical fields of 
equilibrium eddy-dynamics EED and molecular-
dynamics EMD are separated from each other by an 
intermediate-scale statistical field called equilibrium 
cluster-dynamics ECD.  The evidence for the 
existence of the statistical field of equilibrium cluster-
dynamics is the phenomena of Brownian motions [23, 
40-46].  Modern theory of Brownian motion starts 
with the Langevin equation [23] 
 

p
p

d
(t)

dt
= −β +

u
u A            (19) 

 

where up is the particle velocity.  The drastic nature of 
the assumptions inherent in the division of forces in 
(19) was emphasized by Chandrasekhar [23]. 
 Because of the much larger mass and size of 
particles as compared with individual molecules, the 
Brownian motion of particles may not be attributed to 
their collision with single molecules as first noted by 
Gouy [40].  In fact, such a description based on the 
kinetic theory failed, since several experiments have 
shown that the kinetic energy of the particle and the 
molecule may differ by a factor of 100, 000 [40, 46].  
According to the classical descriptions, multiple 
collisions of large numbers of molecules with a single 
suspended particle are believed to be responsible for 
the Brownian motions.  However, since the 
background fluid is in thermodynamic equilibrium, 
either simultaneous or successive collisions of many 
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molecules preferentially from one side of the particle 
and not the other would be unacceptable on account of 
their Maxwellian velocity distribution. 
  To account for Brownian motions, one must 
assume collision between collections of molecules and 
the particle.  Because Brownian motion is an 
equilibrium phenomenon such collections of 
molecules must themselves possess Brownian 
motions.  However, this would mean the existence of 
the equilibrium statistical field of cluster-dynamics as 
shown in Fig.1.  
 Let us consider suspended particles in 
equilibrium with molecular clusters that are 
undergoing Brownian motions themselves as 

hematically shown in Fig.2. sc   

             

MOLECULAR 
   CLUSTER

Γ 

SUSPENDED 
PARTICLE

MOLECULES 

v m  =  v c  +  V m 

 
 

Fig. 2  Brownian motions of suspended particles up 
due to collisions with molecular-clusters uc that 
themselves undergo Brownian motions.  
 
The coefficient of diffusion of the Brownian particle  
[43] written here in invariant form is 
 

kT
D

6 d
β

β

β β

=
πµ

    (20) 

The above relation could be expressed as 
2m u / 3

D
6 d

β β
β

β β β

=
πρ ν

 (21) 

The density and the kinematic viscosity are then 
expressed as 

m nβ β βρ =      ,         (22) u / 3β β βν =

where the mean-free-path  is β

21/( 2 n )β β β= π σ     (23) 
By substitutions from (22)-(23) into (21) one obtains  
 

2D u /(3 2d )β β β β= σ  (24) 
 

The result (24) reduces to the classical result of 
Maxwell  based on the kinetic theory of 

an ideal gas if the equality 

D u d / 3
ββ β=

2 2d2
β βσ =  holds.  

 The result (24) suggests that Brownian particles of 
various sizes behave exactly the same as molecular 

clusters of various sizes. The absence of viscous 
dissipations effects in Brownian motions is due to this 
equilibrium between the particles and clusters. The 
only difference between them is that molecules 
composing the particles as rigid bodies are always the 
same, while those composing molecular clusters will 
be always changing since clusters are only 
stochastically stationary.  Based on the ultra-
simplified models of kinetic theory of ideal gas one 
expects the equality of diffusivity of momentum, 
mass, and heat Dν = = α  [47] thus leading to  
 

1 1
1 1 x 1 x 1

v1
v v

3 3 3
β− β−

β β− β− β− β−

λ
ν = λ = = λ  (25) 

 

that is the scale-invariant definition of the kinematic 
viscosity [28] 
 
5 Theory of Laminar Boundary Layer 
over a Flat Plate  
The invariant model of statistical mechanics, Fig.1, 
described in the previous section suggests that the 
equation of motion for turbulent flows should be 
identical to that for laminar ones with the only 
difference being that for the former the “atoms” of the 
field are eddies rather than clusters. Such a 
correspondence was indeed recently established by 
the solution of the modified equation of motion (14) 
for the classical problems of axi-symmetric and two-
dimensional turbulent jets [31].  It was found that the 
predicted velocity profiles identical to those for 
laminar flow are in excellent agreement with the 
experimental data without any adjustable parameters.   
 In another recent study [32] the solution of (14) 
for the problem of laminar flow over a flat plate was 
presented and the results were found to be in close 
agreement with the classical numerical solution of 
Blasius [33] as well as the experimental data [34, 35].  
The objective of the present study is to extend the 
solution of the modified equation of motion (14) to 
the important problem of turbulent flow over a flat 
plate.  However, to facilitate the presentation of the 
theory for turbulent flow, it is best to first review the 
solution of (14) for laminar flow over the flat plate.  
This is helpful since no reference to any particular 
scale such as LED, LCD, needs to be made until the 
following section where the problem of turbulent 
boundary layer is addressed.   
 The laminar boundary layer is schematically 
shown in Fig.3 and the uniform convective velocity  
 

x ow wβ β
′ ′=   (26) yw β

′ = 0
is considered to be known. 
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Fig.3 Laminar boundary layer over a flat plate. 
 
 

Hence, the “atomic”, element, and system velocities are 
 and the corresponding length scales are 

. The conventional boundary layer 

assumptions  and  are 
introduced along with the dimensionless velocities 

( β β β′ ′ ′u v w, , )

, ,(l  ) Lβ β βλ
2 2 2/ x / y′ ′∂ ∂ ∂ ∂ 2 0

β

β

pβ∇

 

x x( (β β β β β β′ ′ ′ ′x y x y ov v w v v w w, , ) = , , )/  (27) 
and coordinates 
 

x x /β β′= δ   ,      ,   y y /β β′= δ o/ wβ β ′δ =  (28) ν

λ
where δβ is the length for diffusion of momentum due 
to eddy viscosity given by (25) as ν =  

[5].  Because usually , the boundary 

layer coordinates in (28) are stretched 
coordinates. The steady forms of (4) and (14) in the 
absence of chemical reactions and negligible 
transverse convection (26) reduce to  

1 1v / 3β β− β−

o/ wβ β β′δ = ν 1

(x , y )β β

0βΩ =

 

yx vv
0

x y
ββ

β β

∂∂
+ =

∂ ∂
 (29) 

2
x x

x 2

v v
w

x y
β β

β

β β

∂ ∂
=

∂ ∂
 (30) 

 

that are subject to the boundary conditions 
 

y 0β =   (31) x yv vβ β= = 0

1

1

yβ → ∞   (32) x xv wβ β= =

 According to Fig.3, the local axial velocity vxβ 
within the boundary layer must vanish at the plate and 
match the outer convective velocity field xw β =  at 
the edge of the turbulent boundary layer, i.e. in the 
limit  (Fig.3).  Therefore, the convective 
velocity that is the mean of the local velocity w

yβ → ∞
xβ = 

<vxβ> within the boundary layer will have the constant 
value of wxβ = ½ at all axial locations.  By introducing 
the value wxβ = ½ and the similarity variable   
 

y /(2 2x )β β βξ =  (33) 
 

into (30) one obtains 
 

2
x x
2

d v dv
2

d d
β β

β

β β

0+ ξ =
ξ ξ

 (34) 

 

that is subject to the boundary conditions 
 

0βξ =  xv β 0=  (35) 

βξ → ∞  xv β 1=  (36) 
 

 The solution of (34)-(36) is  
 

xv erf ( )β β= ξ  (37) 
 

To facilitate the comparisons, the solution (37) is also 
expressed in terms of a new coordinate 
 

xv erf[ / 2 2β β= η ]  y / xβ β βη =   (38) 
 

where βη  is the similarity variable of the classical 
theory [33, 37].  The boundary layer thickness is 
obtained from (37) as the position ξ  where v1.8∗

β xβ = 
0.99 that by (33) leads to 
 

1/ 2
x5.1 x 5.1 Reβ β βδ =   (39) 

 

in close agreement with the classical numerical result 
of Blasius [33, 37] 
 

x5.0 Reβ βδ     (40) 
 

 The calculated velocity profile from (38) and the 
experimental data of Dahwan [35] are shown in Fig.4. 
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η
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Fig.4 Comparison between the predicted axial 
velocity profile from (38) and the experimental data 
of Dhawan [35]. 
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As shown in Fig.4, the predicted velocity profile from 
(34) is in excellent agreement with the experimental 
data of Dhawan [35], which are more recent as 
compared to 1942 data of Nikuradse [34]. The earlier 
experimental data of Nikuradse [34] are found to 
always locate on the lower boundary of the more recent 
data shown in Fig.4 as discussed earlier [32]. 
 One can express the solution (34) in terms of the 
stream function 
 
 

 

 

0
2 2x erf ( )dβξ

β β β βΨ = ξ ξ∫  (41) 
 
 

The transverse velocity that is obtained from (41) as 
 
 

 

 
y 0

2
v erf ( ) erf (z

x
βξ

β β β β

β

= ξ ξ −⎡ ⎤
⎣ ∫ )dzβ ⎦

 (42) 

 
 

Some of the streamlines calculated from (41) in terms 
of (x coordinates are shown in Fig.5.  , y )β β
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Fig.5 Calculated streamlines from (41) for both 
laminar and turbulent flow over a flat plate. 
 
6 Theory of Turbulent Boundary Layer 
over a Flat Plate 
The turbulent boundary layers over flat plates or in 
pipes are usually described by phenomenological 
methods leading to the well-known law of the wall [37, 
50, 51].  The structure of turbulent boundary layer over 
a flat plate is schematically shown in Fig.6. The free 
stream turbulent flow away from the wall is separated 
from the wall by three distinguishable regions 
respectively called (1) the turbulent boundary layer at 
LED scale (2) the laminar boundary layer at LCD 
scale, and (3) the laminar sub-layer at LMD scale.  The 
coordinates as well as the length scales associated with 
each of the three “boundary layers” are described next. 

 
                ′y                                                          0      

 wx  = 1 

                                                             1 
            

                                                                                                                         
 

                                                                                         2 
                                                                                      
                                                                    3 
                           0                                      
                                                                                 ′x  
Fig.6 Turbulent flow over a flat plate, (0) turbulent 
free stream (1) turbulent boundary layer at LED 
scale (2) laminar boundary layer at LCD scale (3) 
laminar sub-layer at LMD scale. 
 
 Recently, a scale-invariant logarithmic definition 
of coordinates was introduced [48] where the 
coordinate at scale β is related to that at the lower 
adjacent scale β −1 as schematically shown below 
 

    

∞β + 1 1β + 1 0β + 1 − 1β +1

0β 1β ∞β − ∞β − 1β 

− ∞β +1

λβ +  1  = π
2 β 

λβ = π
2 β -  1

 
 
 

Fig.7 Hierarchy of normalized coordinates for 
cascades of embedded statistical fields. 

 
According to Fig.7, the range ( 1 ,1 )β β−  of the outer 

coordinate xβ will correspond to the range 
 of the inner coordinate1 1( ,β− β−−∞ ∞ ) 1xβ− .  Also, the 

zero of the outer scale ( 0 , 0 )β β− +  decompactifies to 
the unity of the inner scale  as shown in 
Fig.7.  An analogy between the hierarchy of 
embedded boundary layers shown in Fig.6 and the 
hierarchy of embedded finite interval 

1 1( 1 ,1 )β− β−−

( 1 ,1 )β β−  on a 
line shown in Fig.7 may be noted. This analogy is 
further supported by the fact that the solution of the 
velocity field (37) involves Gauss’s error function that 
also formed the basis for the “measure” employed for 
the normalization of coordinates [48]. In order to 
reveal the relative sizes of the various coordinates 
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close to the wall, the region near the origin of Fig.6 is 
expanded in Fig.8. 
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Fig.8 Coordinates near the wall and the associated 
origins at LED, LCD, and LMD scales. 
 
 Next, the relationship between the length scales of 
adjacent boundary layers (Fig.6) is addressed.  In a 
recent investigation on opposed finite jets [49], it was 
found that the appropriate scale factor between 
adjacent generations of statistical fields such as LED 
and LCD is  
 

1 e c 4/ /β+ β =δ δ δ δ     (43) 
 

The result (43) originates from the fact that the 
boundary layer thickness in opposed finite jets is [49]  
 

1L 2 /β β+ β β= δ ν Γ     (44) 
 

where the stretch rate is defined as  
 

w / Lβ β β
′Γ =      (45) 

Finally, the inner viscous length scale is defined as 
 

/ wβ β β
′δ ν      (46) 

 

By (44)-(46) one arrives at the scaling expressed in 
terms of Reynolds number 
 

1Re 4w L / /β β β β β+ β= =′ ν δ δ    (47) 
 

that is in accordance with (43).  Since the coordinates 
(x , y )β β  are measured in units of (28), by (47) the 
coordinates of adjacent scales will relate as  

βδ

 

1 1 1/ 4/ /β β− β− β=ξ ξ δ δ    (48) 
 

Also, in view of the scale-invariant definition of 
kinematic viscosity (25), one arrives at an invariant 
definition of Reynolds number 
 

x x x 1 x 1Re L w / L w /( v )
β β β β β β β− β−= =′ ′ν λ ′  (49) 

 

 With the above concepts of coordinates of different 
scales, the solution for velocity distribution in regions 
(1)-(3) of Fig.6 can be addressed.  The solution of (34) 
in region (3) at LMD will correspond to laminar sub-

layer.  This thin layer will have a velocity profile given 
by (37) and involves the characteristic “atomic”, 
element, and system velocities m m m( ′ ′ ′u v w, , ) and 

lengths scales . 
Because of the very small lengths, the structure of the 
viscous sub-layer is not observed at the resolution of 
usual fluid mechanic experiments and will not be 
further examined here.  

m m

9 7
m , ,(l  ) m10 10  L 10− − −λ= = = 5  

 For the laminar boundary layer in region (2) of 
Fig.6 at LCD, the characteristic “atomic”, element, and 
system velocities and the associated lengths are 

c c c( ′ ′ ′u v w, , )  and . 
Hence, typical system length m is about the 
thickness of the boundary layer and the dissipative 
length is the cluster size 

c c

7 5 3
c , ,(l  ) m10 10  L 10− − −λ= = =  

0

3
cL 10−≈

7
c ml 1 −≈ λ = m that is also 

the mean free path of molecules.  The friction velocity 
is defined as [37] 
 

( )2
y 0

v / v / yτ ′=
′ ′ ′= τ ρ = ν ∂ ∂  (50) 

along with the definitions 
 

v v / v+
τ′ ′=  , y y /( / v+ )τ′= ν ′  (51) 

that lead to the classical result [37] 
 

( )
y 0

dv / dy 1+

+ +

=
=   (52) 

Also, by (28) one obtains from (50) the dimensionless 
friction velocity 
 

( )2 2 2
o y 0

v v / w v / yτ τ =
′ ′= = ∂ ∂  (53) 

The velocity field (37) when applied to (50)-(53) 
results in 
 

2v 1/ 2 xτ = π  (54) 
 

With (54) the similarity coordinate (33) and the 
classical coordinate (51) will be related as 
 

y /(2 2x ) ( / 2)v y+
β β β τβξ = = π β  (55) 

and hence 
 

(2 / ) v y+
β β τβξ = π ξ = β  (56) 

 In terms of the new dimensionless velocity and 
coordinate in (51), the solution (37) becomes  
 

1 2v v / v erfn(v y )
v

+ +
β β τβ τβ β

τβ

= =
π

 (57) 

where the coordinate-normalized error function is 
defined as 

2

0
erfn( ) exp[ / 4]d erf ( )

ξ
ξ = −πξ ξ =∫ ξ  (58) 
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 From (52) and (35) one obtains  
such that the friction velocity may be expressed as  

v v / v y+
τ= = +

 

v v / y+
τβ β β=  (59) 

 

By (37),  at the edge of boundary layer 

, and (33) results in 
cv 0.995

cb 2ξ x 4 2xδ  such that 
.   At  where , the friction 

velocity by (59) and (48) is approximately  
x2y / δξ cby+ 2 1

2 8

cv

 

cv 1/τ  ,  (60) mv 1/τ

In addition to the scaling (48), the coordinates of 
adjacent scales are normalized, expressed in 
measureless form, as shown in Fig.7 such that 
 

1y (2 / )y /+ +
β β= π 4−    (61) 

 

With (60) and (61), the solution  (57) assumes the form 
 

c c c c cv 0 (1/ v  (2/ ) erfn( v )) y+ +
τ τ= π+   

                      m8 (2/ ) erf ( / 8)y+= π  (62) 
 

The normalization constant 2 / π  in (61) converts 
erfn  in (62) to the classical error function.    
 Finally, the region (1) of Fig.6 is the turbulent 
boundary layer at LED scale with the “atomic”, 
element, and system velocities  and lengths 

. The velocity profile 
in turbulent boundary layer at LED scale is again 
obtained from solution of the invariant equation of 
motion (14) that leads to (34) resulting in the solution 
similar to (62) 

e e e( ′ ′ ′u v w, , )

e e

5 3 1
e , ,(l  ) m10 10  L 10− − −λ= = =  

 

ce ev 0 8(2 / ) erf ( / 8y+ += + π )    

         2
m5 8(2 / )  erf ( y / 32)+= + π  (63) 

 

 The factor 28(2 / )π  in (63) is because of the 

additional factor of 2/ π  due to the coordinate 
renormalization (61) in moving from cy+  to my+  
coordinate.  The number 5 in (63) results from the 
choice of the origin shown in Fig.8 and the scale factor 
(48).  According to the logarithmic definition of 
coordinates [48] the zero of LED corresponds to the 
unity of LCD .  Also, the scale 

relation (48) leads to the equivalence  in 

terms of LCD coordinate .  Finally, because of the 

relation , the position  based on the 

origin at LCD scale  will correspond to position 

e 1(0 0 1 1 )β β−= ⇔ = c

4

5

1(1 4 )β β−⇔

my+

c m(0 1 )⇔ my+ =

c(0 )

my+ =  since we consider the wall to be at the origin of 
LMD scale and c m(0 1 )=  as shown in Fig.8.  Such 
relation between the unity and the zero of adjacent 
scales within the hierarchy, Fig.7, is necessary for 
description of statistical fields from cosmic to photonic 
scales as discussed earlier [48]. 
  The predicted velocity profiles for the turbulent 
boundary layer calculated from (62) and (63) are 
shown in Fig.9 along with the experimental data from 
various sources in the literature [37, 50, 51].  
 

      5 10 15 20 25 30
y+
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Fig.9 Comparison between the predicted velocity 
profile from (62) and (63) and experimental data in 
the literature [37, 50, 51]. 
 
As shown in Fig.9, the agreement between the theory 
and the experimental data is good.  It is important to 
emphasize that the results of the present theory 
suggests that the classical and well-known logarithmic 
law of the wall introduced by von Karman-Prandtl [26, 
37, 51] requires a closer examination and should be 
modified.  Indeed, recently it has been suggested [52] 
that a power law rather than logarithmic law could be a 
closer representation of the velocity field in turbulent 
boundary layers.  However, according to the present 
theory the velocity profiles in turbulent boundary 
layers should satisfy error-function type solutions such 
as presented in (62) and (63). 
 
7 Concluding Remarks 
The scale-invariant model of statistical mechanics was 
applied to describe a statistical theory of turbulence.  
The invariant modified form of the equation of motion 
was solved for the classical problem of turbulent 
boundary layer over a flat plate.  The predicted 
velocity profile was found to be in good agreement 
with the large body of experimental data reported in 
the literature. 
 

Proceedings of the 5th IASME / WSEAS International Conference on Fluid Mechanics and Aerodynamics, Athens, Greece, August 25-27, 2007      79



 

References: 
 

[1] Broglie L. de, C. R. Acad. Sci., Paris, 183, 447 
(1926); 184, 273 (1927); 185, 380 (1927). 

[2] Broglie L. de, Non-Linear Wave Mechanics, A 
Causal Interpretation, Elsevier, New York, 1960. 

[3] Broglie L. de, Found. Phys.1, 5 (1970). 
[4] Madelung, E., Z. Physik. 40, 332  (1926). 
[5] Schrödinger, E., Berliner Sitzungsberichte, 144 

(1931). 
[6] Fürth, R., Ζ. Phys. 81, 143 (1933). 
[7] Bohm, D., Phys. Rev. 85, 166 (1952). 
[8] Takabayasi, T., Prog. Theor. Phys. 70, 1 (1952). 
[9] Bohm, D., and Vigier, J. P., Phys. Rev. 96, 208 

(1954). 
[10] Nelson, E. Phys. Rev. 150, 1079 (1966). 
[11] Nelson, E. Quantum Fluctuations, Princeton 

University Press, Princeton, New Jersey, 1985. 
[12] de la Peña, L., J. Math. Phys. 10, 1620 (1969). 
[13] de la Peña, L., and Cetto, A. M., Found. Phys. 12, 

1017 (1982). 
[14] Barut, A. O., Ann. Physik. 7, 31 (1988). 
[15] Barut, A. O., and Bracken, A. J., Phys. Rev. D 23, 

2454 (1981). 
[16] Vigier, J. P., Lett. Nuvo Cim. 29, 467 (1980); 

Gueret, Ph., and Vigier, J. P., Found. Phys. 12, 1057 
(1982); Cufaro Petroni, C., and Vigier, J. P., Found. 
Phys. 13, 253 (1983);Vigier, J. P., Found. Phys. 25, 
1461 (1995). 

[17] Reynolds, O., Phil. Trans. Roy. Soc. A 186, 123, 
(1895). 

[18] Taylor, G. I., I-IV, Proc. Roy. Soc. A 151, 421 
(1935). 

[19] Kármán, T. von, and Howarth, L., Proc.  Roy. Soc. 
A 164, 192 (1938). 

[20] Robertson, H. P., Proc. Camb. Phil. Soc. 36, 209 
(1940). 

[21] Kolmogoroff, A. N., C. R. Acad. Sci. U. R. S. S. 30, 
301 (1941); 32, 16 (1942). 

[22] Chandrasekhar, S., Rev. Mod. Phys. 15, 1 (1943). 
[23] Chandrasekhar, S., Stochastic, Statistical, and 

Hydrodynamic Problems in Physics and Astronomy, 
Selected Papers, vol.3, University of Chicago Press, 
Chicago, 1989. 

[24] Batchelor, G. K., The Theory of Homogeneous 
Turbulence, Cambridge University, Cambridge, 
1953. 

[25] Landau, L. D., and Lifshitz, E. M., Fluid Dynamics, 
Pergamon Press, New York, 1959. 

[26] Tennekes, H., and Lumley, J. L., A First Course In 
Turbulence, MIT Press, 1972. 

[27] Sohrab, S. H., Rev. Gén. Therm. 38, 845 (1999). 
[28] _______, WSEAS Transactions on Mathematics, 

Issue 4, Vol.3, 755 (2004). 
[29] _______, WSEAS Transactions on Fluid Mechanics, 

Issue 5, Vol.1, 337 (2006). 

[30] Sohrab, S. H., IASME Transactions, Issue 3, Vol.1, 
466 (2004). 

[31] ______, IASME Transactions, Issue 4, Vol.1, 626 
(2004). 

[32] ______, IASME Transactions, Issue 8, Vol.2, 1389 
(2005). 

[33] Blasius, H., Grenzschichten in Flüssigkeiten mit 
kleiner Reibung. Z. Math. Phys. 56, 1 (1908).  
English translation in NACA TM 1256 (1950). 

[34] Nikuradse, J., Laminare Reibungsschichten an der 
längsangetrömten Platte. Monograph, Zentrale f. 
Wiss. Berichtswesen, Berlin (1942). 

[35] Dhawan, S., Direct measurements of skin friction, 
NACA TN 2567 (1952).  

[36] de Groot, R. S., and Mazur, P., Nonequilibrium 
Thermodynamics, North-Holland, 1962. 

[37] Schlichting, H., Boundary-Layer Theory, McGraw 
Hill, New York, 1968. 

[38] Williams, F. A., Combustion Theory, Benjamin 
Cummings, New York, 1985. 

[39] Panton, R. L., Incompressible Flow, Wiley, New 
York, 1996. 

[40] Gouy, M., J. de Phys. 7, 561 (1888); C. R. Acad. 
Sci., Paris, 109 (1889); Rev. Gén. Sci. (1895). 

[41] Cercignani, C., Ludwig Boltzmann, The Man Who 
Trusted Atoms, Oxford  University Press, Oxford, 
1998. 

[42] Smoluchowski, M., Polish Men of Science, (R. S. 
Ingarden, Ed), Polish Science Publishers, 
Warszawa, 1986. 

[43] Einstein, A., Investigations on the Theory of 
Brownian Movement, R. Fürth (ed.), Dover 
Publications, New York, 1956. 

[44] Perrin, J. M., Brownian Movement and Molecular 
Reality, Taylor and Francis, London, 1910. 

[45] Füchs, N. A., The Mechanics of Aerosols, Dover, 
New York, 1964. 

[46] Nelson, E., Dynamical Theory of Brownian Motion, 
Princeton University  Press, Princeton, 1967. 

[47] Hirschfelder, J. O., Curtiss, C. F., and Bird, R. B., 
Molecular Theory of Gases and Liquids, Wiley, 
New York, 1954. 

[48] Sohrab, S. H., 11th  WSEAS International 
Conference on Applied Mathematics, March 22-24, 
2007, Dallas, Texas. 

[49] ______, IASME Transactions, Issue 7, Vol.2, 1097 
(2005). 

[50] Martinelli, R. C., Transactions.  ASME 69, 947 
(1947). 

[51] Landahl, M. T., and Mollo-Christensen, E., 
Turbulence and Random Processes in Fluid 
Mechanics.  2nd Ed. Cambridge University Press,  
1992.  

[52] Barrenblatt, G., I., Chorin, A. J., and Prostokishin, 
V. M., Proc. Nat. Acad. Sci., USA 94, 733 (1997). 

Proceedings of the 5th IASME / WSEAS International Conference on Fluid Mechanics and Aerodynamics, Athens, Greece, August 25-27, 2007      80


	A Modified Theory of Turbulent Flow over a Flat Plate
	1 Introduction
	Fig.3 Laminar boundary layer over a flat plate.
	Fig.6 Turbulent flow over a flat plate, (0) turbulent free s
	Fig.8 Coordinates near the wall and the associated origins a
	7 Concluding Remarks






