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Abstract: - We discuss an initial–boundary value problem for the Navier–Stokes equation with several types of slip
boundary conditions. We mainly pay attention to boundary conditions based on vorticity.
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1 Introduction

We deal with the Navier–Stokes system

∂tu− ν∆u+ (u · ∇)u+∇p = f (1)

divu = 0 (2)

in Ω× (0, T ), whereΩ is a bounded simply connected
domain inR3 with the boundary of the classC2,1 and
T > 0. We consider the initial condition

u(x, 0) = u0(x) in Ω. (3)

The system (1), (2) describes the motion of a viscous
incompressible fluid with a constant density (we as-
sume that it equals one). We denote byu the velocity,
by p the pressure, byf the specific body force and
by ν the coefficient of viscosity. The equation (1) ex-
presses the balance of momentum and the equation (2)
represents the condition of incompressibility.

By a well–posed problem we mean a problem
which possesses the existence of a weak solution and
under an additional assumption on smoothness of the
solution, also its uniqueness. In order to obtain such
a problem, we must add an appropriate boundary con-
dition. The system (1), (2) is usually considered with
the homogeneousDirichlet boundary condition

u |∂Ω = 0 (4)

in the case when∂Ω is a fixed wall. This condition
was suggested by G. G. Stokes in 1845 and it expresses
the requirement that

u · n |∂Ω = 0, (5)

uτ |∂Ω = 0, (6)

whereuτ = n × u × n denotes the projection ofu
onto the plane tangential to∂Ω. While the first condi-
tion (5) naturally follows from the impermeability of
the wall, the second one (6) is often called the “no–slip
condition” because it is believed that the fluid cannot
slip on the boundary due to its viscosity. The mathe-
matical theory of the Navier–Stokes equation with the
Dirichlet boundary condition is relatively well elabo-
rated, and this assertion also includes the case of an
inhomogeneous condition of the type (4).

On the other hand, if we confine ourselves only
to the condition (5) and assume that the law of con-
servation of momentum holds up to the boundary then
we naturally obtain, from physical considerations, a
complementary boundary condition to (5) in the form

(T · n)τ + ku = 0 (7)

whereT is the dynamic stress tensor,(T ·n)τ denotes
the tangential component of the surface force acting on
the boundary andk is a coefficient of proportionality.
Let us explain in greater detail what we mean by this:
LetV be an arbitrary control domain inΩ such that its
boundary∂V consists of two surfacesΓ0 ⊂ ∂Ω and
Γ1 ⊂ Ω. The difference of momenta inV between the
timest2 andt1 is∫ t2

t1

∫
V

(∂tu) dxdt.

The flux of the momentum through the boundary ofV
in the time interval[t1, t2] is

−
∫ t2

t1

∫
∂V
u (u · n) dS dt
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= −
∫ t2

t1

∫
V

(u · ∇)udxdt.

The surface force consists ofT ·n = (T ·n)τ + τnn
on Γ1 andτnn − ku on Γ0. Here we denote byτn
the normal component of the surface force coming
from the stress tensor, acting on the boundary ofV
(i.e. τn = n · T · n) andk (> 0) is the coefficient
of friction between the fluid and the wall. Naturally,
since(T · n)τ expresses the tangential component of
the contact force on the boundary of the type “fluid–
fluid” (i.e. onΓ1), it must be replaced by−ku on the
boundary of the type “fluid–wall” (which is in our case
Γ0). Thus, the impulse of the surface force is∫ t2

t1

∫
Γ1

[(T · n)τ + τnn] dS dt

+
∫ t2

t1

∫
Γ0

[τnn− ku] dS dt.

The impulse of the body force is∫ t2

t1

∫
V
f dxdt.

Due to the conservation of momentum, we have∫ t2

t1

∫
V

[∂tu+ (u · ∇)u− f ] dxdt

=
∫ t2

t1

∫
Γ0

[τnn− ku] dS dt

+
∫ t2

t1

∫
Γ1

[(T · n)τ + τnn] dS dt.

If we considerΓ1 → Γ0 then the volume ofV tends to
zero (and consequently the volume integral vanishes)
andn |Γ1 → −n |Γ0 . Hence we obtain∫ t2

t1

∫
Γ0

[−(T · n)τ − ku] dS dt = 0.

This implies, due to the possibility of the arbitrary
choice ofΓ0, the condition (7). The condition (5) is
calledNavier’s boundary condition, sometimes how-
ever this name also automatically involves (7). It is
necessary to add that the coefficientk depends on the
normal stressτn, similarly as the friction between a
body towed on a desk depends not only on the area of
the contact surface, but also on the force the body acts
onto the surface with.

The condition (7) naturally follows from the weak
formulation of the problem (1), (2), (3), (5) which
sounds:Givenu0 ∈ L2

σ(Ω) (the space of divergence–
free in the sense of distributions vector functions inΩ

whose normal component in the sense of traces equals
zero on the boundary) andf in L2(0, T ;W−1,2

σ (Ω)).
(W−1,2

σ (Ω) is the dual toW 1,2
σ (Ω) = W 1,2(Ω) ∩

L2
σ(Ω).) We search foru ∈ L2(0, T ; W 1,2

σ (Ω)) ∩
L∞(0, T ; L2

σ(Ω)) such that∫ T

0

∫
Ω

[−u · ∂tφ+ T · ∇φ+ (u · ∇)u · φ] dxdt

+
∫
∂Ω
ku · φ dS dt

=
∫

Ω
u0 · φ(. , 0) dx+

∫ T

0
〈f ,φ〉Ω dt (8)

for all φ ∈ C∞(0, T ; W 1,2
σ (Ω)) such thatφ(. , T ) =

0. Here〈 . , . 〉Ω is the duality betweenW−1,2
σ (Ω) and

W 1,2
σ (Ω). Indeed, ifu is a “smooth” solution of this

problem then, considering at first the test functionsφ
with a compact support inΩ× [0, T ), we find out that
there exists an appropriate pressurep such thatu, p
satisfy the equation (1) a.e. inΩ× (0, T ). Then, con-
sidering all admissible test functions and integrating
by parts in (8), we arrive at the identity∫ T

0

∫
∂Ω

[T · n+ ku] · φ dS dt = 0,

which implies (7).
Let us note that the coefficientk is often con-

sidered to be zero. The correctness of this step is,
of course, a matter of discussion and depends on the
real smoothness of the boundary ofΩ. Although the
number of works on the Navier–Stokes equation with
Navier’s boundary condition is not as high as with
Dirichlet’s boundary condition, it is possible to state
that the theory which considers Navier’s condition is
also relatively well developed.

2 Generalized impermeability
boundary conditions

There is a wide range of other possibilities between
(4) and (5). In this section, we wish to discuss the case
when, in addition to the condition of impermeability
(5), we assume that the 2D flow on the boundary ofΩ
is non–rotational, which means that it satisfies

curlu · n |∂Ω = 0. (9)

The natural weak formulation of the initial–boundary
value problem (1)–(3), (5), (9) comes from the Navier
–Stokes equation written in the form

∂tu+ ν curl2u+ curlu× u+∇q = f (10)
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and it is:Givenu0 ∈ L2
σ(Ω) andf inL2(0, T ; D−1).

We search foru ∈ L2(0, T ; D1)∩L∞(0, T ; L2
σ(Ω))

such that∫ T

0

∫
Ω

[−u · ∂tφ+ ν curlu · curlφ

+ (curlu× u) · φ] dxdt

=
∫

Ω
u0 · φ(. , 0) dx+

∫ T

0
〈f ,φ〉Ω dt (11)

for all φ ∈ C∞(0, T ; D1) such thatφ(. , T ) = 0.
HereD1 denotes the space{ϕ ∈W 1,2

σ (Ω); curlϕ ·
n |∂Ω = 0}. It is proved in [1] that each function
from D1 coincides with a function of the type∇ψ
(for someψ ∈ W 2,2(Ω)) on ∂Ω. The problem (11)
has a global in time weak solution (see [1]) and if
the given data are smooth then it also has a local in
time unique strong solution (see [3]). It seems to be
strange at the first sight because while the homoge-
neous Dirichlet boundary condition (4) in fact repre-
sents three scalar conditions and the Navier conditions
(5), (7) also together involve three scalar conditions,
the conditions (5) and (9), explicitly used in (11), rep-
resent only two scalar conditions. However, we can
show that the problem (11) implicitly involves in it-
self the third condition, complementary to (5) and (9),
which is

curl2u · n |∂Ω = 0. (12)

Indeed, if we assume that (11) has a solutionu
“smooth enough” then choosing at first only the test
functionsφ which have a compact support inΩ ×
[0, T ) and integrating by parts in (11), we deduce that
there exists a scalar functionq such that the pairu,
q satisfies the equations (10), (2) inΩ × (0, T ), the
initial condition (3) and the boundary conditions (5),
(9). Considering then all admissible test functionsφ,
integrating again by parts in (11) and using the infor-
mation thatu, q satisfy the equation (10), we arrive at
the integral identity∫ T

0

∫
∂Ω
ν curlu · (n× φ) dS dt = 0.

Using the representationφ = ∇ψ on∂Ω× (0, T ), we
obtain

0 = −
∫ T

0

∫
∂Ω
ν n · (curlu×∇ψ) dS dt

= −
∫ T

0

∫
Ω
ν div (curlu×∇ψ) dxdt

= −
∫ T

0

∫
Ω
ν curl2u · ∇ψ dxdt

= −
∫ T

0

∫
∂Ω
ν curl2u · nψ dS dt.

This implies (12).
The boundary conditions (5), (9), (12), since they

express the impermeability ofu, curlu andcurl2u
through∂Ω, are called thegeneralized impermeability
boundary conditions. (We abbreviate them as GIBC.)

The usage of GIBC in the mathematical theory of
the Navier–Stokes equation brings several advantages.
(See e.g. [1] and [3].) Let us mention only two of
them:

1. If we denote byΠσ the so called Helmoltz projec-
tion, i.e. the orthogonal projection ofL2(Ω) onto
L2
σ(Ω) thenΠσ commutes with the Laplace oper-

ator∆. This plays an important role especially in
the theory of an associated Stokes operator and it
also has interesting consequences for the Navier–
Stokes equation.

2. While Dirichlet’s or Navier’s boundary conditions
for velocity do not directly induce a well–posed
problem for vorticity, the GIBC do: Ifu is a solu-
tion of the problem (10), (2), (3) with GIBC then
ω = curlu satisfies the series of the boundary
conditions of the same type as GIBC:

ω · n |∂Ω = 0, curlω · n |∂Ω = 0,

ν curl2ω · n |∂Ω = −curlf · n |∂Ω . (13)

3 The inhomogeneous version of
GIBC

The series (13) of the boundary conditions for vortic-
ity, except for many other reasons, is a motivation for
the study of the Navier–Stokes equation with an inho-
mogeneous version of GIBC:

(a) u · n |∂Ω = α0, (b) curlu · n |∂Ω = α1,

(c) curl2u · n |∂Ω = α2. (14)

We further suppose, for simplicity, thatα0, α1 andα2

are time independent. The problem can be approached
in the following way: at first we find a functiona, de-
fined a.e. inΩ, which satisfies the first two boundary
conditions (14a) and (14b) and we search for the so-
lution in the formu = a+v. Then the new unknown
functionv should satisfy (5), (9). The treatment of the
third boundary condition (14c) requires a finer tech-
niques and we shall explain it later. The existence of
a functiona with the needed properties is guaranteed
by the lemma:

Lemma 1 Let Γ0, Γ1, . . . , ΓN be the components of
∂Ω and letΩ = Int Γ0∪Ext Γ1∪. . .∪Ext ΓN . Given
functionsα0 ∈ W 1/2,2(∂Ω) andα1 ∈ W−1/2,2(∂Ω)
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such that∫
∂Ω
α0 dS = 0 and

〈α1, 1〉Γi = 0 (i = 0, 1, . . . , N)

(where〈. , .〉Γi are dualities in appropriate spaces),
there exists a vector functiona ∈W 1,2(Ω) such that
diva = 0 a.e. inΩ, a is harmonic (in the distribu-
tional sense) in some neighborhood of∂Ω and

(a) a · n |∂Ω = α0, (b) curla · n |∂Ω = α1. (15)

Moreover, there exists a constantc1 > 0, independent
of α0 andα1, such that

‖a‖1,2 ≤ c1 (‖α0‖1/2,2; ∂Ω + ‖α1‖−1/2,2; ∂Ω). (16)

PROOF. (i) At first we solve the Neumann problem

∆ψ1 = 0 in Ω,
∂ψ1

∂n

∣∣∣
∂Ω

= α1. (17)

There exists a unique (up to an additive constant)
weak solutionψ1 ∈ W 1,2(Ω) which depends contin-
uously onα1 in the sense that

‖∇ψ1‖2 ≤ c2 ‖α1‖−1/2,2; ∂Ω (18)

wherec2 is independent ofα1.

(ii) Next we consider the problem

curlϕ0 = ∇ψ1 in Ω, ϕ0 |∂Ω = 0. (19)

It is solvable inW 1,2
0 (Ω) by means of Theorem 2.1

from [2]. Moreover, there existsc3 > 0, independent
of∇ψ1, such that

‖ϕ0‖1,2 ≤ c3 ‖∇ψ1‖2 . (20)

(iii) Further, we solve the Neumann problem

∆ψ0 = −divϕ0 in Ω,
∂ψ0

∂n

∣∣∣
∂Ω

= α0. (21)

It has a unique (up to an additive constant) solution
ψ0 ∈W 2,2(Ω) which satisfies the estimate

‖∇ψ0‖1,2 ≤ c4 (‖ϕ0‖1,2 + ‖α0‖1/2,2; ∂Ω) (22)

wherec2 is independent ofϕ0 andα0.
Now we puta := ∇ψ0 + ϕ0. The functiona is

divergence–free becauseψ0 satisfies the equation in
(21). It is harmonic becausecurl2a = curl∇ψ1 =
0 in the sense of distributions inΩ. The normal com-
ponent ofa on ∂Ω equalsα0 becausea · n = ∇ψ0 ·
n = α0 on∂Ω. Sincecurla = curlϕ0 = ∇ψ1 and

consequently,curla ·n = ∇ψ1 ·n = α1 on∂Ω, the
functiona also satisfies (15b). ut

The weak solutionu of (10), (2), (3), satisfying
the boundary conditions (14), can now be constructed
in the formu = a + v wherev satisfies in a weak
sense the equations

∂tv + ν curl2v + curla× v + curlv × a
+ curlv × v +∇q = g (23)

and (2) inΩ×(0, T ), the homogeneous boundary con-
ditions (5), (9) on∂Ω×(0, T ) and the initial condition

v(. , 0) = v0 := u0 − a(. , 0) (24)

in Ω. (Hereg = f − ν curl2a − curla × a.) This
guaranties thatu satisfies the conditions (14a) and
(14b) on∂Ω × (0, T ), but it does not solve the ques-
tion of validity of (14c). The condition (14c) cannot
be treated in the same way as (14a) and (14b) because
(14c) involves the second derivatives ofu and the con-
struction of the weak solutionu inW 1,2(Ω) does not
directly provide an opportunity to controlcurl2u · n
on ∂Ω. Thus, the boundary condition (14c) enters
the weak formulation through a certain linear func-
tional b which, in the case when the weak solution is
“smooth”, causes that it satisfies (14c) as a “natural
boundary condition”.

The weak formulation of the problem (23), (2),
(24) with the homogeneous boundary conditions (5),
(9) is: Suppose thatg ∈ L2(0, T ; D−1) and
b ∈ L2(0, T ; W−1/2,2(∂Ω)). We search forv ∈
L2(0, T ; D1) ∩ L∞(0, T ; L2

σ(Ω)) such that∫ T

0

∫
Ω

[−v · ∂tφ+ ν curlv · curlφ

+ curla× v · φ+ curlv × a · φ
+ curlv × v · φ] dxdt

=
∫

Ω
v0 · φ(. , 0) dx+

∫ T

0
〈g,φ〉Ω dt

+
∫ T

0
〈b,φ〉∂Ω dt (25)

for all φ ∈ C∞(0, T ; D1) such thatφ(. , T ) = 0.

We do not deal with the question of existence of
a solution of this weak problem. Nevertheless, we
can state that the existence can be established by es-
sentially the same method as the weak solution to
the “classical” Navier–Stokes initial–boundary value
problem in a bounded domain, as it was shown by
E. Hopf already in 1951.
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We will finally discuss the question in which
sense the weak formulation involves the boundary
condition (14c). Givenb ∈W−1/2,2(∂Ω), we define
α2 ∈W−3/2,2(∂Ω) by the equation

ν 〈α2, ϕ〉∗∂Ω = 〈b,∇ϕ〉∂Ω (26)

for all ϕ ∈W 2,2(Ω). Here〈 . , . 〉∗∂Ω denotes the dual-
ity betweenW−3/2,2(∂Ω) andW 3/2,2(∂Ω).

If g ∈ H0 andv is a “smooth” solution of (25),
then we can at first consider the test functionsφ with
a compact support and show that there exists a scalar
functionq such thatv, q satisfy the equations (23), (2)
a.e. inΩ × (0, T ). Then, following the standard pro-
cedure, we can consider all admissible test functions
and show, by means of the integration by parts in (25),
thatv satisfies∫ T

0

∫
∂Ω
ν curlv · (n× φ) dS dt

=
∫ T

0
〈b,φ〉∂Ω dt. (27)

Functionφ, as an element ofC∞(0, T ; D1), has the
formφ = φ0+∇ϕwhereφ0 ∈ C∞(0, T ; W 1,2

0 (Ω))
andϕ ∈ C∞(0, T ; W 2,2(Ω)), see [1]. Substitutingφ
in this form into the left hand side of (27), we obtain:∫ T

0

∫
∂Ω

curlv · (n× φ) dS dt

= −
∫ T

0

∫
∂Ω
n · (curlv ×∇ϕ) dS dt

= −
∫ T

0

∫
Ω

div (curlv ×∇ϕ) dxdt

= −
∫ T

0

∫
Ω

curl2v · ∇ϕdxdt

= −
∫ T

0
〈curl2v · n, ϕ〉∂Ω dt.

The integrand in the last term can also be expressed as
〈curl2v · n, ϕ〉∗∂Ω. Thus, (25) and (27) yield

ν 〈α2 − curl2v · n, ϕ〉∗∂Ω = 0

for a.a.t ∈ (0, T ). This equation shows thatv satisfies
the boundary conditioncurl2v · n = α2 in the sense
of the equality inW−3/2,2(∂Ω) for a.a.t ∈ (0, T ).
Sinceu = a + v andcurl2a = 0 in the sense of
distributions in some neighborhood of∂Ω, functionu
also fulfills the boundary condition (14c) in the sense
of equality inW−3/2,2(∂Ω) for a.a.t ∈ (0, T ).
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