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Abstract: - A system composed of a metallic cylinder, filled with pressured air (up to 5 atm), and a rubber, 

square sectioned ring seal, was investigated theoretically and experimentally. Under a certain pressure 

difference (p) (internal minus atmosphere) and external sealing force, the rubber seal is compressed (h) and 

should prevent air leakage. In a certain p range, a continuous, nonlinear decrease in p(t) as a function of time is 

detected. A few classical (macro) thermodynamic models for predicting p(t), by considering air flow through 

cracks, have been suggested before [1], but they have failed to describe the profile in question due to the 

coupled constitutive properties of rubber and a construction that allow the creation of micro-scale "tunnels" in 

the rubber-lid interface, through which the air can pass. A novel heuristic model, which assumes an analogy 

between the micro-scale air streamlines and polymer strands is proposed. Thus, polymer equations based on 

statistical thermodynamics are applied on the air streamlines. Using this model, there are four unset parameters 

whose values are being determined by the experimental profiles, similar to the semi-phenomenological rubber 

model of Mooney-Rivlin. An excellent correspondence between the model and the experimental data is 

achieved, which suggests that the model captures some physical essence of the phenomenon. Many standard 

trend-lines have been tested and failed to describe p(t) accurately, including 3rd order polynomial which has 

also four parameters. 
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1   Introduction 
An air pressure metal cylinder (up to 5atm) is 

covered and sealed with a rubber, square sectioned 

ring, as seen in [1]. Under a certain pressure 

difference (internal minus atmosphere pressure - p) 

and external sealing force, the rubber seal is 

compressed (h) and should prevent air leakage. 

However, experiments show a continuous, nonlinear 

decrease in p as a function of time.  

A few classical (macro) thermodynamic models 

for predicting p(t), by describing air flow through 

cracks (of heat regenerator for example) have been  

previously suggested ([2]) but they have failed to 

accurately describe the profile in the following 

specific setup due to the coupled constitutive 

property of rubber and a construction that allows the 

creation of micro-scale "tunnels" in the rubber-lid 

interface, through which the air can pass. Several 

mathematical and physical models of describing air 

flow through cracks are available in [3], [4], but 

those have to be adjusted to describe air flow 

through rubber-metal interface. Moreover a simple 

control volume analysis is insufficient. 

Background knowledge in statistical 

thermodynamics and rubber thermodynamics is 

essential for constructing the model described in the 

following sections. This article will be based on 

some results and the jargon of [5]-[9]. An equation 

of great importance is (13-13) in [8] stating for a 

freely joint polymer strand  
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where τ is the tensile force acting on the polymer, M 

is the number of monomers, a is Kuhn length, kT is 

the multiplication of Boltzmann constant by the 

temperature and l is the projected length. Bar 

superscript represents time average or space average 

(which are equal by the Ergodic Assumption). L is 

the Langevin function and L
-1

 is its inverse.  (1) is 

valid as long as the argument in L
-1

 is between 0 and 

1. 

In the following, we will describe the construct 

classical and modern models to predict the analytical 

form of the pressure profile. Finally we will 

compare to experimental results. We shall see that 

due to lack of relations between the different 

parameters, the proposed model becomes semi-
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phenomenological. The uncertainty of the influence 

of the air-rubber interaction on the flow rate is 

represented in [10]. 

 

2   Experiment Setup 
 

2.1   Introduction and Targets 

Full details regarding the experiment can be found 

in [1]. We shall use some notions and results 

presented there. 

Consider the setup where the inner pressure is set 

to a constant value, which is different from the 

atmospheric pressure as described in [1]. The 

"Force" preventing from the piston to pop up and 

also causes the rubber seal to be subjected to 

uniaxial compression. Thus, the vertical length – 

originally h0 – decreases to a controlled value h. 

Once deformed enough, the seal prevents leakage of 

air from the inside. Note that thanks to the upper 

airway the outer surface of the seal is subjected to 

Pa.  

The main target is to investigate the pressure vs. 

time p(t) profile. The seal’s function, is to preserve 

the pressure difference p=P-Pa between the two 

gasket sides. The mechanism of air leakage through 

the seal at poor sealing is also presented in [1]. 

 

2.2 Preliminary results and Conclusions 
p(t) profile was recorded for different initial pressure 

difference and rubber deformations. The parameters 

range are: p0=1-5[atm], ε=(h0-h)/h0=0 to -0.2. 

Preliminary results showed that p(t) graphs were 

different considerably one form the other for the 

same initial conditions. It was concluded that the 

experiment is very sensitive to the rubber gaskets 

specimen, that is, a property that varies over the 

specimen i.e., surface quality. See fig.1 for more 

details.  

To check this assumption, few experiments were 

conducted with the same gasket, and it was shown 

[1] that the repeatability was much higher.  

 

3   Theoretical Modeling 
 

3.1   Qualitative Chain of Actions 
The proposed micromechanical model of leakage is 

based on three phases. 

Phase I includes placing the rubber gasket and 

deforming it to the set value h.  

The polymer microstructure is composed of 

strands and junctions. According to the non-

entangled mechanical models [6], the junctions (at 

least, the ones on the surface) move affinely due to 

compression and each strand remain attached to its 

original junctions. The junctions and strand getting 

closer and dense in the bulk of the rubber gasket 

(which were dense enough already to prevent air 

flow). However, the surface isn’t a mosaic of 

junctions but more of a blend of junctions and loose 

strands – strands connected only to one junction – 

creating coarse surface profile. We get a flow 

through the rubber-metal interface where the 

topology (can be seen in the top view - fig. 2) is 

pressure dependent: as the pressure difference 

decays, the streamlines become curvier. See [1] for 

more details.  

Phase II is the pressure buildup. We open the 

main valve, letting air to flow from the supply line 

to the cylinder. The supply line pressure is 

controlled and thus raising the pressure inside the 

cylinder. At this phase, air is pumped in and leaks 

out at the same time but the influx rate is much 

greater than the leakage rate. When the level of 

pressure reaches the desired one, and stables, the 

secondary valve is closed and phase III is being 

executed. 

In phase III, the air flows out through the 

interface between the seal and the metal lid. Let's 

take a top view (fig. 2) on one of the two interface 

planes and examine how the air finds its way out, or 

how the streamlines are arranged. 

 The air doesn’t search for the shortest way out 

but for the less “energetic”. The path choosing 

requires a trade-off between the friction loss and the 

path potential energy. The minimum energy 

principle sets the relation between the pressure 

difference and the paths’ topology stated before and 

in [1]. Therefore the streamline arrangement 

changes with pressure, and its topology isn't 

constant. In addition, the streamline morphology can 

change from one sample to the other, including the 

number of streamlines, due to different surface 

profiles. 

Through those micro-airways, the air sneaks out 

and causes pressure drop. The phase, and the 

experiment, ends when the pressure difference is 

small enough, so there's no conventional airflow but 

rather an exit of air in “percolation”. Reaching that 

 

Figure 1 – Three pressure profiles for specimens 

B,C,D. p0≅≅≅≅4.1[atm],  εεεε≅≅≅≅-0.148.  
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region, the pressure drop rate is too small and the 

experiment ends there. In this study, we are only 

interested in the poor sealing region, where the air 

exits by continuous streamlines. 

Another important observation shown in [1] (see 

discussion and videotaped experiment) is that rubber 

ring expands during the first phase and doesn’t 

contract until the middle of phase III. Meaning in 

phase III there are two regions where the volume 

within the rubber seal remains constant. It is also 

possible for the rubber not to contract at all (the two 

regions coincide).  

 

3.2   Classical Model - Bernoulli's Streamline 
Let's observe figure 2 again. It might be possible 

that a streamline ends inside the rubber plane and 

never reaches outside. We ignore this kind of 

streamlines and therefore count the number of 

streamlines as the number of those that end outside 

and denote it as Nl. In case that several lines are 

joined together, we will count them separately. In 

order to use Bernoulli's equation, one should assure 

steady state incompressible frictionless flow. This is 

clearly not the case, since the inner pressure drops 

constantly and the air velocity might change from 

one kind of rubber to the other due to friction 

between the air molecules and the loose strands. 

Moreover, each streamline is microscopic and 

macroscopic analysis can unintentionally neglect 

important phenomena for the micro case. 

Nevertheless, it is a good start for modeling phase 

III which is our main concern. 

Assuming an ideal gas, we have 

 ab

M
P RT RT

V
ρ= =  (2) 

Pab denotes the absolute pressure, M the mass, V the 

volume and ρ the density. Now, we would like to 

use Bernoulli's equation between a point in the inner 

volume to a point at the exit of a streamline. We 

neglect gravitational effects and the entrance 

velocity, leading to: 
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Further, we examine the mass conservation 

equation and continuing the discussion by assuming 

isothermal process and using the equations we have 

so far.  
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A is a typical section area of a streamline. If the 

change of volume is negligible we obtain: 
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A calculation with the given dimensions and 

considering and the experimentally found rubber 

expansion show that the change of the volume is 

absolutely not negligible. 

In spite of the above crude assumptions, it is very 

surprising to see that in some experiments the 2nd 

order polynomial trendline fits almost perfectly 

(fig.3). Note that the samples were denoted A,B,C 

etc. Full results will be presented in the last chapter.  

In other samples, Bernoulli model produces fine 

correspondences at the beginning and the end of the 

profile, but fails to describe the whole process.  

 

3.3   The "Polym-air" model 
 

Pin

Pa

 

Figure 2 - schematic drawing of the steamlines 
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Figure 3 - 2nd order polynomial trendline in black, 

describing the actual profile in red for sample B. 
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3.3.1 Introduction and Motivation 
Upon examining figure 2, it is realized that the 

streamline arrangements look similar to an ensemble 

of air strands filling the hollows between the rubber 

strands. It's tempting to treat the 2D streamlines as a 

2D polymer. Moreover, we preserve the "streamline-

strand" analogy basing on a one-to-one mapping of 

streamlines to strands. In case of two or more 

streamlines connected before the exit we look at 

them as two or more strands placed one under the 

other. Thus, the one-to-one mapping is achieved. 

We would like to refer to a single streamline as a 

one strand of polymer and apply equation (1). The 

tension is analogous to the pressure difference as 

they both tend to straighten the polymer/streamline. 

The correspondence is through the relation: 

 .Apτ ↔  (6) 

This analogy arises from the similarity between the 

“tension-strand topology relations” and “pressure-air 

topology relations’ introduced above. 

Moreover, the strand is made from M monomers 

with uniform length a. When the pressure difference 

is zero, the air is free to go in each direction with no 

restrictions or any influence of one monomer to the 

other so the polym-air is considered freely joint. 

When internal pressure is applied we can use (1) on 

the streamline (“chain with free joints” [7]).  

Note the symmetry of the analogy. We took the 

air between the hollows of the polymers and 

switched roles – now, the polymer is filling the air 

hollows and the system obeys the same rules. Of 

course, the polymer must be dense enough and 

subjected to sufficient pressure in order to achieve 

polymer-like-topology of the air. 

  

3.3.2   Basic Relations and Assumptions 

Let's redefine the streamlines using polymer 

jargon. Recall that we ignore a line whose end-to-

end vector’s head is still in the polymer. Those do 

not contribute to the pressure leakage and can be 

treated as a rather negligible part of the inside 

volume that the air is filling during the experiment. 

We observe the streamlines that have an end-to-end 

vector with head positioned outside of the rubber 

gasket, and try to describe the air flow through the 

gasket-lid interface.  

We consider a typical streamline as starting close 

to the inner radius of the gasket (r1<Rin) and ends 

close to the outer radius (r2>Rout). The M and a 

parameters are the geometric parameters since the 

polym-air is freely joint.  Observe figure 4, given a 

hole in the inner lip of the gasket – a site for 

streamline creation. The direction of the x-axis is the 

vector connecting the center of the gasket and the 

hole; that is due to the natural tendency of the 

streamline to align with this direction (minimum 

energy). In grey we can see three, out of infinite, 

possibilities of creating streamlines. Each streamline 

has its own starting point, end point and length l 

(along the x-axis). Theoretically, l has no 

limitations. If we denote the radii deference of the 

ring as δ (D/2-d/2=δ), then l can be larger, smaller 

or equal to δ. 

There is an assumption that almost must be made 

at this point: 

 .l δ=  (7) 

If the pressure difference is not extremely large, the 

start and end points will be close to the surfaces of 

the gasket and then the lengths will be around δ in a 

somewhat narrow range. We now use equation (1) 

and create the most important relation (analogy) of 

this model: 

 1kT
Ap

a Ma

δ−  =  
 

L  (8) 

This equation describes the connection between 

the pressure difference and the topology of the 

streamlines. The next step is to set a connection 

between the topology of the streamlines and the 

pressure loss rate. Clearly, the air velocity is 

reduced when the streamline path is more curved, 

i.e., a smaller a. For simplicity we assume for a 

single streamline: 

 ,v aα=  (9) 

where v is the velocity. The physical interpretation 

of (9) is somewhere between friction, surface quality 

and rubber-fluid interaction (see [10] for more 

details about fluid-surface interaction).  

Let's summarize the main variables in the 

discussion:  

1. kT - we assume that the temperature doesn't 

change, as we did before.  

2. M - the number of monomers in a streamline 

changes stochastically during phase III of the 

experiment. The range of values is the natural 

numbers, and tends to increase as p decreases. 

Alternately, when p aspires to infinite the streamline 

would penetrate the rubber along the x-axis, making 

a long straight monomer (polym-air), so M aspires 

 

Figure 4 - streamline possibilities 
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(as a distribution) to a constant 1. 

3. a - the length of each monomer, which is 

inversely monotone with p from the same 

considerations for M. 

4. δ - it is a mechanical parameter that supposed to 

capture the volume change also. During phase III, δ  

is a constant at the beginning of the process, but 

after some time it starts to increase and aspires to the 

initial dimensions of the rubber ring. This means 

that the pressure profile depends on δ through the 

mechanical model of the rubber. The typical cross 

section area A (maybe projected) of the streamline is 

another mechanical parameter that depends mainly 

on ε stochastically. 

6. Nl - the number of streamlines is a monotonic 

random function of p, (stochastic in time). At the 

same time, as ε grows in magnitude, the number of 

streamlines decreases.  

For a first order approximation we use the center 

limit theorem and assume that all the streamlines are 

statistically homogenous over time with narrow 

distribution, that is, "Act the same averagely". We 

now use equation (8) and replace each variant by its 

average.  

Combining (6) with the statistical homogenous 

assumption, we can generalize (4):  

 .l apV pV N p A aα+ =��  (10) 

In principle, one can rewrite the air volume using 

geometric parameters and finally, given a 

mechanical and metal-rubber friction model one 

should connect the volume change with (8) and (10) 

to obtain a first order ODE with the proper initial 

condition. Even if we had a good mechanical model 

in our toolbox, it would be difficult to predict 

precisely p(t) since there are other variables whose 

numerical values are unknown, such as Nl, α.  

 

3.4   Assuming Profiles 

The first expression to be dealt with is δ/Ma, which 

is the ratio between the average projected length and 

the actual length of a typical air tunnel. This 

expression is the argument of the inverse Langevin 

function so it should be between 0 and 1. It is clear 

that higher pressure leads to shorter paths, so an 

"exponential decay" profile seems to be a good 

candidate, which is also characteristic to linear 

viscoelastic processes.  

Aa is the other expression to be assumed in (8). 

Considering (10), recall that at the beginning and the 

end of phase III the volume V doesn’t change, and p 

is quadric due to Bernoulli's model. Therefore the 

expression Aa is close to be linear (if Nl doesn't 

interrupt), i.e. 

 ( )2 ,Aa Zt W= −  (11) 

when Z is very small, W>0 , and the null point 

t=W/Z occurs much after the final time of the 

experiment.  

In the following chapter we shall see how this 

model, now a four–parameters–semi- 

phenomenological one, describes accurately 15 

different experiments. 

 

3.5   Final Outcome 
Based on the final outcome: 

 ( ) ( )2 1 rt
p Zt W Ce

− − −= − L  (12) 

and given p(t) data, the calculation process is: 

1. Assume Z and W and multiply p by the 

relevant expression. 

2. Apply Langevin function. 

3. Apply exponential regression. Review the 

R
2
. 

Thus, iteratively and based on some educational 

guesses, one can find the best values of the 

parameters Z,W,C,r. 

 

4   Comparison with Experiments 
 

4.1    Theoretical vs. Experiments 
Using the method described above, 4 parameters 

were calculated for each experiment of the total of 

15. The R
2 ranged from 0.99565 to 1.00000. See 

results in fig.6 for 3 experiments (chosen for 

visibility). In two out of the first 5 experiments, 

anomalies were detected at the initial stage (100 

seconds out of 1000 - See discussion for details). 

For those two, the parameters were recalculated 

ignoring the first 100 seconds. Then the minimal R2
 

improved to 0.99965. The average R
2
 is 0.99992. 

Note that the model enables extrapolation. It is 

presented in fig. 6 but we shall not go into details 

about it. 

For comparison, a best fit 3rd order polynomial 

(4 parameters) for one of the experiments was 

chosen for demonstration. The weak correspondence 

and "wavy" behavior which is not possible in a real 

profile is clearly seen (fig. 5). Another 4 parameter 

function, constructed from a sum of two exponents, 

Experiment #5
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Figure 5 - best fit 3rd order polynomial 
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was applied and showed better graphical 

correspondence than the polynomial trend-line but 

was inferior to the proposed model.  

 

4.2   Discussion 
The proposed model can explain the differences in 

experimental results during the first stage of phase 

III. It is crucial to build the pressure from zero to the 

desired value, wait for stabilization – which is 

actually when the rubber stops its expansion - and 

then close the main valve and start monitoring. 

When the pressure is high, streamlines that are 

associated with high pressure are created. It is 

possible that after we decrease the pressure 

manually, they will stay with their high pressure 

properties because they have already managed to 

overcome the relevant obstacles. Such 

irreversibility, which was observed in two of the 

experiments, cannot be directly predicted by the 

model. 

 

5   Conclusions 
In this work we've seen that the air is leaking 

through the deformed rubber gasket in a decaying 

profile. Using a polymer-air analogy, we’ve 

constructed two models: classical and modified. The 

classical one gave a partial description, while the 

modified one provided excellent correspondence to 

experimental results, using the 4-parameter-semi-

phenomenological profile. 

Further work should be done in finding the 

source of the high sensitivity of the pressure profile 

to the initial conditions and the surface quality.   
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Figure 6 -  ( )p t profile. Note that there are two lines representing the experimental data and the model prediction, 

in addition to the extrapolation line. 


