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Solution of Some Problems of Thermodynamical Systems
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Abstract: The analytical solutions of the systems of Laplace’s differential equations of transfer laws in the
body with n binding degrees of freedom are presented. It is suggested that potential fields are one-, two- and
three-dimensional. Laplace’s differential equations are analysed in Cartesian, cylindrical and spherical
coordinates taking into account various boundary conditions. There are two specific problems solved in the
paper. The solutions presented in the paper increase the possibility of employing these systems in practice.
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1 Introduction

It is known that the potential u =u(x,y,z) satisfies
Laplace’s equation
*u . o
0362 + @}2 + 0}2
if u is a temperature potential, the potential of the
stationary electromagnetic field, a material filtration
potential, the potential of the speed of non-vortex
non-compressible liquid flow, the potential of the
gravitational force in all space points not being in
the masses created space, the potential of the
electrical charges interaction in all points of charge-
free region of space, the potential of the definition
of castings quality, and so on.

Therefore the solutions of Laplace’s equations
with the corresponding boundary conditions attract
attention of many researchers [1-8]. In this paper, it
is presented a method of the solution of Laplace’s
differential equations system expressed in the form:
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or corresponding form in cylindrical and spherical
coordinates under different boundary conditions.
The system of equations (1) describes the law of
transfer for a nonequilibrum system (or body) with n
by connected degrees of inner freedom and three-
dimensional fields of potentials P; = P;(x,y,z), where
20
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generalized potential;

sz(El,Ez,...,En) is an internal energy of a
system, J; L; — a coefficient of transfer and L; = Lj;.
The coefficient L;; is called a principal coefficient of
transfer. It characterises conductivity of a
thermodynamic system in relation to a charge
integrated with potential P,. Coefficient L; when i #
j is called a cross-coefficient. It characterises the
influence of j-th charge on potential P; integrated
with it [9].

2 Method of the solution

A system of equations (1) after some
transformations:
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is expressed as
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So equation (1) in Cartesian coordinates can be
written in the form:
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in cylindrical coordinates - in the form:
A 8%u;, O%u,
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or in spherical coordinates - in the form:
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where
n
j=1
i=12,..,n.

Thus, the procedure of theoretical solutions of
transfer differential equations of a thermodynamic
system with n binding degrees of freedom is the
following:

1. Find the solution u; of equations Laplace’s of a
kind (2), (3) or (4) under appropriate boundary
conditions. The well-known formulas indicated in
works on equations of mathematical physics can be
used as the basis for this purpose.

2. After determination of the free members
(functions u;) find generalized potentials P; of a
thermodynamic system. The system of linear
(concerning potentials P;) of equations can be
solved by various ways, for example, Cramer’s rule
can be applied [10]:
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3 Examples of the solving procedures
In one dimension, the equations (2), (3) and (4) have
the forms:

n P.
YA g .
DL Fea 0 (in rectangular coordinates),

: dP
DL i(rjj =0 (in cyclical coordinates),
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4 d 2 dPJ . . .
L,—| r*—L| =0 (in spherical coordinates).
; ! dr( ar (in'sp )

In two dimensions, the thermodynamic potentials
are defined by the following systems of differential
equations:
in Cartesian coordinates:
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in cylindrical coordinates:
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and in spherical coordinates:

no 1o Rall]
2l r—z;(r ;J*

P
2 line L |=0
r*sin@® O 20

The equation (7), noting (5), can be expressed as
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The equations (8) and (9), noting (5), can be
expressed  analogously.  Consequently,  the
calculation of two-dimensional thermodynamic
potentials P; = P;(x,y) consists of two steps. In the
first step, Laplace’s equation (10) is solved using
respective boundary conditions. In the second step,
the system of equations (5) is solved.

Some problems solved using the
recommendations of the work [11] are presented
below.

Example 1. The thermodynamic potentials P =
P(r,z) in a solid and finite dimensions body (0 <r <
a, 0 <z <[, axis z is symmetry axis of the cylinder)

satisfy the following boundary conditions:
,Dj:O,z:/, O<r<a;

P =F(r),z=0, O<r<a
P,
7’+h,.Pj=O,r=a, 0<z<!

where F(r) is a bounded function; i =j = 1,2,...,n.



In this case Laplace’s equation has the form

2
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where
up =u;(r,z)= ZL,, P;(r,z) (12)
i=12,...n

The thermodynamic potentials are calculated
from the equations (12) using known functions u,. In
this case, it is necessary to solve the equation (11)
under the following conditions:

u; =0;z=1[; O<r<a

ZLU Fi(r),z=0, 0<r<a

A

u; =, r=a, O<z<l

i=12,..,n.

Functions u; are defined by
o 2ayJo(ray )shll - 2)ay ]
k=1a* (hiz + al.zk )13 (acy )sh(lay,)
where ¢ are positive roots of equation:
hiJolaa;)-a;Jy(ae;)=0 (14)

Jo(x), Ji(x) are first-order cylindrical functions,
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0 J=1
i=12,..,n.
If Fy(r) = Pj, = const, then the equation (13) can

be written as
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The solutions of this equation are used in the
equation (12) for obtaining potentials P(r,z).
If P, = P(r,z) satisfy the following boundary
conditions

Pi=1;(r),z=0,

15)

O<r<a;
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—+h,~Pj=0,z=Z, O<r<a
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i=12,...n

then u; is calculated:
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u; = B—I’”Jo(’”azk)zLyfj( r)dr, (16)
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where a; are roots of equation (14), f(r) are defined

functions,
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i=12,..n.

Using the values of u; found above, the
thermodynamic potentials are calculated from the
equations (12).

In three dimensions, the thermodynamic
potentials are defined by the following systems of
differential equations:
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By introducing the designation (5), the equation
(17) assumes the form of the equation (2).

A specific problem in a case of three-
dimensional thermodynamic potentials is given
below.

Example 2. The three-dimensional system is
given as 0 <x <a, -b <y <b, -¢c <z <c The
potentials P, = Pj(x,y,z) satisfy the following
boundary conditions

P; =Pj;o =const,x=0
P,
——+hiP;=0,x=a
7.9

P,

E—hipj =0,y=—b
all

E-ﬁ-hipj =0,y=b
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i=12,..,n

In this case the functions u; are calculated from
the equations (2) under the following conditions:

n
Z iiPjo =Vip =const,x=0

u:

L+ hiu; =0,x=a
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i=12,..,n

The solution is expressed as follows:
_ D& APV coslaiy)eos(Bisz )y (x)
up =22 ) 5
r=ls=1K;, l(ﬂs + hj )c+ h; Jcos(airb)cos(ﬂisc)
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where
hysh{l;(a — x)]+ Lieh[l; (a - x)]
h;sh(al; )+ Lich(al;)
2 2

K, :(air +hj )b+ h;

2 2 2
li =ajy + Biy
a;- and S are positive roots of equations:
ajtg(ba;)=h;
Bitg(cB;)=h;
i=12,..,n.

The solutions considerably facilitate the

numerical methods [12-14] put into solutions of the
thermodynamics systems with »n binding degrees of

freedom and increase the possibility of employing
these systems in practice.

@;(x) =

4 Conclusions

A procedure for the solution of the systems
differential equations of transfer laws in the body
with n binding degrees of freedom is presented. The
one-, two- and three-dimensional potential fields are
analyzed. Laplace’s differential equations are
analysed in Cartesian, cylindrical and spherical
coordinates taking into account various boundary
conditions. The solutions considerably increase the
possibility of employing Laplace’s equations in
thermodynamics.
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