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Abstract: A series of experimental observation are presented a dual-wavelike instability in vortex rings. The first
one is presented at Reynolds number range between 600 and 1000 for circular vortex ring and the second one could
be observed in radiant-symmetric vortex rings, azimuthal number n ≥ 2, at least covers the Reynolds number from
275 to 1000. The azimuthal number of the first instability depends on the ratio η (of core radius to ring radius),
while the azimuthal number of the second case accords with the shape of the orifice and the frequency of the second
instability are also affected by the ratio η. The experimental results are compared with some theoretical prediction.
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1 Introduction

In the nearly thirty years, there has been a renewed
interest into the oscillation in vortex ring. When
Reynolds numbers smaller than 600, laminar vortex
ring will form. If the Reynolds number is higher,
about between 600 and 1000, the formed laminar vor-
tex rings will transform to turbulence via an unstable
azimuthal wave developing process. This azimuthal
wave is the well-known instability of shortwave
flexural perturbation with wavelength of the order
of the vortex ring core radius. If Reynolds number
is beyond this range, turbulent vortex ring will form
from initial state [1]. Widnall & Sullivan [2] took
some pictures to show this shortwave instability and
also proved that a vortex ring in ideal fluid is always
unstable theoretically. For a given vortex ring, only
one unstable mode exists, depending on the size of the
vortex core, the smaller ratio η, the larger azimuthal
number n. The primary object of the present paper
is to show another kind of wavelike phenomena in
vortex rings. Superposing of this kind of waves could
cause oscillations in different azimuthal number or
oscillatory modes. The azimuthal number of this
oscillation is independent of the ratio η but depend on
the shape of the shape of the orifice, which is used to
produce the vortex ring. However the ratio η maybe
could affect the frequency of oscillation theoretical.

On the other hand, Stephen [3] compared
Pochhammer-Chree theory with Timoshenko theory
[4] of wave motion in cylindrical beam, showing a
split character of the standing waves spectrum. Chan

Figure 1: Experimental apparatus

et al. [5] detected this two-branch standing wave spec-
trum experimentally and named the two branches sa-
wave and sb-wave. This dual-wave spectrum charac-
ter is similar to that in vortex rings. Moreover, it could
be found that the two processes are so analogous from
the comparison of oscillation in vortex rings and that
in solid rings.

2 Experimental Apparatus and
Methodology

The experimental vortex rings generator could be
divided into four parts: pendulum, smoke tank, orifice
plates and test section, as shown in figure 1. In order
to observe the motion of the vortex rings, the smoke
tank was filled with incense smoke. The pendulum
impacting the smoke tank would form vortex rings
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Figure 2: upper: Optical geometry for side view and
lower: Optical geometry for front view

from the orifices. In order to create the different
initial boundary conditions, a series of orifices were
employed, including one circular (D =20mm), two
elliptical (28mm×14mm and 23mm×17mm), one
triangular (side length 25mm) and one hexagonal
orifice (side length 10mm). A small change of volume
in the smoke tank due to impacting could prevent
producing of turbulent vortex rings and therefore a
thin plastic film was used, which makes the smoke
tank looks like a drum. The test section was made of
transparent synthetic resin, which prevented the outer
flowing air affecting the experiments.

Schematics of the optical layout are shown in
figure 2. Figure 2.a is used to take pictures of the
front view and figure 2. b is for side view. Light from
a 60mW, 628nm, He-Ne single-frequency continuous
laser is focused on a glass rod and scattered to form
a laser sheet. In figure 2.b the distances between the
orifice and the four laser sheets are 20mm, 75mm,
95mm and 170mm respectively. The angle θ between
inflection and incident laser sheets is about 7◦ and the
CCD camera is inclined a small angle ϕ, which could
increase the intensity of the light entering the camera.
From the side view movie, the relationship between
traveling time and distance for different initial veloc-
ity, or Reynolds number could be got. For noncircular
orifices, the Reynolds number Re = 4UR′/ν, where

Figure 3: Front view of an elliptical vortex ring when
it passed the four fixed laser sheets

R′ is the equivalent radius and R′ = A/χ, where A
is the area of the orifice and χ is wetted perimeter.
For elliptical orifices, χ ≈ π[1.5(a + b) −

√
ab].

Therefore the equivalent radius of the 28mm×14mm
elliptical orifice is 2.26mm and the equivalent radius
of the 23mm×17mm is 2.56mm. In the front view
geometry, a vortex ring could though four fixed laser
sheets. Compared with the time- traveling distance
relationship from side view, the initial velocities of
the vortex rings in front view movie could be got.

3 Experimental Observation and
Discuss

For vortex rings from the 28mm×14mm elliptical
orifice, the periodic change of diameter was obvious.
A series of front view pictures are shown in figure
3, which present the shapes of one vortex ring when
it though the four laser sheets receptively. Another
series of the relationships of diameter and distance are
plotted in figure 4. The dots in this figure are collected
from side view movies of seven vortex rings covering
the range of Reynolds number about from 275 to
1000. Except the elliptical orifice for the vortex ring
marked with black squares are rotated 90◦, all the
other vortex rings are produced from the same orifice
at same location. It could be observed that the period
of this change is independent of the traveling velocity,
but due to the distance from the orifice. From this
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Figure 4: The periodical changing of the diameters
of seven vortex rings for the 28mm×14mm elliptical
orifice. a, b and c are the locations for the pictures
in figure 3. The distance for Figure 4.d is taken at
170mm, out of the range shown in this figure. The
curve in this figure is used to fit the distribution of all
the dots except the group marked by black squire by
least square method.

Figure 5: The periodical changing of the diameters of
vortex rings from the 23mm×17mm elliptical orifice.
The curve in this figure is used to fit the distribution of
all these dots by least square method.

figure, the velocity of the vortex ring marked with ∆
is very close to that marked with black squires, and
therefore they could be thought as the data observed
from two directions for a same initial condition. The
two groups of dots are conjugated to each other.
Combine the figures of front view and the data from
side view, the change of diameters performs like an
elliptical oscillation and it exits in a large range of
Reynolds number, at least from 275 to 1000.

For vortex rings from the 23mm×17mm elliptical
orifice, this oscillation also could be detected by the
same methodology, although it is not as obviously
as those from the 28mm×14mm elliptical orifice.
Figure 5 is presented the change of diameter for
these vortex rings. Because of using a common video

camera, the time between every neighboring dots in
this figure is about 0.04 second (24 frame/second).

Two curves are used in figures 4 and 5 to describe
the distribution of these dots. Both of the curves could
be written as D = Do + D′ sin(kL + Lo) , where k is
the wave number. In fact, the size of the vortex rings
would grow up a litter during the traveling process [6].
This process would decelerate the traveling velocity
and affected the wave number k. Base on the hypoth-
esis of k is a linear function of L, the mathematical
expression for curves in figure 4 could be written as
D = 2.08 + 0.14 sin[(1− 0.02L)L + 2.4] and that in
figure 5 could be written as D = 2.7 + 0.2 sin[(1 −
0.03L)L + 2.6]. The algebraic expression of the two
curves also could be written as D = F(L) in short,
where the traveling distance L is a function of initial
velocity and time. Thus the diameter could be written
as a function of Re and t. Ignore the small change of
frequency due to size, the diameter is depending on
time only. The common form could be written as

D = Do + D′ sin[ωt + T ] (1)

for a given Reynolds number, where ω is depend-
ing on Reynolds number. Figure 6 shows the linear
relationship between Reynolds number and frequency
f , which is proportional to ω, that ω = 2πf .

In order to distinguish this kind of oscillation
from the instability investigated by Widnall et al.
[2],[7], figure 7 presents a couple of contrastive
pictures. Both the two pictures are came from
the 28mm×14mm elliptical orifice. The left one,
figure 7.a was taken at a higher traveling velocity,
Re ≈ 500 and the figure 7.b was taken at a lower
velocity,Re ≈ 300. It is affirmed that the Widnall’s
instability only appears at higher Reynolds number,
not only for circular vortex rings, but also for ellipti-
cal ones. It also could be known that the shortwave
instability would appear at lower Reynolds number
for elliptical vortex rings.

A similar oscillation also exits in the vortex rings
from triangular orifices. A light geometry was used to
detect this triangular oscillation, which is analogous
that in figure 2, but a collimator was put between the
laser and glass rod. This collimator could increase
the diameter of the laser to illuminate a 3-D space,
while not 2-D planes. Of course, this modification
would weak the strength of the laser. Figure 8 shows
three continuous frames from a movie by this light
geometry. The time slots are 0.04s between every two
neighboring flames. In figure 8.a, the vortex ring is ∇
shape and it evolves to4 shape in figure 8.c gradually
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Figure 6: Relationship between Reynolds numbers
and frequencies. The frequencies equals the recipro-
cal of the first period in this figure.

via figure 8.b. Experiments on polygonal vortex rings
with more sides were also carried out, and some
pictures also show the wavy pattern. However, it
becomes difficulty to judge whether the pattern is
caused by this oscillation or Widnall’s shortwave
instability.

The solution for the flexural wave motion in cylin-
drical beam is a family of curves, although only the
lowest modes were found. Curves of the dispersion
relation for waves in a straight vortex filament were
given by Tsai et al. [8], which looks like that for cylin-
drical beam. It could be known that for a given wave-
length, the ratio of wave frequency to the circulation
is constant from Tsai et al’s dispersion profile. On the
other hand, Franenkel [9] gave a vortex ring traveling
velocity expression including circulation,

U =
Γ[log 8R

a − 1
4 + η2(−3

8 log 8
η + 15

32 + O(η4 log 8
η ))]

4πR
(2)

Base on the hypotheses for the oscillation in
vortex rings is because of superposing of traveling
waves in contrary direction, the wave frequency or
the oscillation frequency should proportion to its
traveling velocity U . This consequence agrees with
the experimental results well.

Kopiev et al.[10] calculated the eigen-oscillations
of vortex ring and found that the oscillation have a
similar spectrum with that in vortex filament. A di-
mensionless frequency for Bessel modes was given,

Θ =
1
2
m± [1 + O(η)] (3)

Figure 7: Comparison of two elliptical vortex rings
with different Reynolds number (a)Re ≈ 500;
(b)Re ≈ 300.

Figure 8: Oscillation of triangular vortex ring, the
time between every two flame is 0.04 second.

where Θ is the ratio of oscillation frequency to
rotation frequency of vortex ring core and m is wave
shape number. When m = 1 , it is a bending wave. A
conclusion could be drawn from this equation that the
dimensionless frequency is a constant for any flexural
mode, and nevertheless the deduction of this equation
is base on the Biot-Savart law. Combine the two
equations, it could be got that the bigger equivalent
radius R′ , the lower oscillation frequency for ana-
logue shape vortex rings. However, the vortex rings
from the 23mm×17mm elliptical orifice has a higher
equivalent radius than that from the 28mm×14mm
orifice, but with a higher frequency. Therefore, the
difference of slopes in figure 6 could be thought as
due to the effect of shape.

4 Summary and Conclusion
This visualization investigation has revealed the fol-
lowing characters concerning vortex rings instability:
Firstly, there exists another wavy instability in vor-
tex rings, which is different from the shortwave in-
stability observed by Widnall et al. The wavelength
of this instability is longer than that of shortwave in-
stability. Secondly, this oscillatory instability covers
a larger range of Reynolds number than shortwave in-
stability. Thirdly, the shape of the orifice or its initial
state determines the azimuthal wave number of this
oscillation. Moreover, both the special period and the
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temporal period of this oscillation would decrease if
the elliptical oblatenesses increase. Furthermore, the
aspect ratio of vortex rings is not depending on the
elliptical oblatenesses of the orifice. Lastly, it was
proven that special period is depending on the shape
of the orifice only and the frequency of this oscilla-
tion is proportional to the traveling velocity and the
circulation of the vortex ring experimentally and the-
oretically.
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