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Abstract: - We study the fundamental problem of spherical Couette flow (SCF) in the presence of heat and 
under the action of a gravitational field. The flow is considered as unsteady, axisymmetric and the fluid as 
viscous, incompressible and Newtonian. The numerical technique, which we use, is convergent and consistent 
and can be applied to 3D or 2D flow motions. We focus our attention to such aspect ratios ( )o i iσ= r -r r  for 
which have the presence of the important physical phenomenon of Taylor vortices formation and especially 
for large annular gaps, σ>0.24. Results concerning the stream function, the temperature field, the function of 
vorticity, the skin friction and the rate of heat transfer for large annular gap are presented. Finally, we calculate 
the drag acting on the inner and outer sphere and the thermal energy which is convected from the inner sphere 
to the fluid and from the fluid to the outer sphere. 
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1   Introduction 
Natural convection in enclosures finds many 
practical applications in the many diverse fields of 
present engineering practice, such as the cooling of 
the passive cooling of advanced nuclear reactors, the 
double walled spherical tanks, the solar energy 
collector, gyroscope, geophysics fields, and the 
thermal storage systems [1]. It is important in these 
applications to realize flow field and heat transfer in 
enclosures considering the effect of local buoyancy. 

In spite of the considerable literature on the 
problem going back for several decades [2], the 
problem has still not been fully understood and 
many open questions remain. The main 
mathematical difficulties arise from the fact that the 
preferred mode is usually non-axisymmetric and 
time dependent even at the onset of convection. In 
addition the relatively large number of parameters 
that are necessary to describe even the most simple 
version of the problem have complicated its 
investigation. 

Liu et al [3] studied thermal convection in a 
spherical shell under an axial or a central force field 
both experimentally and numerically. They showed 
that in contrast to the axial force field for the same 
parameter, the flow under a central force field 
remains essentially axisymmetric. 

Travnikov et al [4] studied the energy stability 
problem with respect to axisymmetric disturbances 
of the natural convection in the narrow gap between 
two spherical shells under the earth gravity. The 

problem was solved for different fluids with 
Pr=0-100  and different radius ratios n=0.9, 0.925, 
0.95. They showed that there is a big difference 
between critical numbers for energy and linear 
stability theories for the small Prandtl numbers. For 
large Prandtl numbers this difference is very small. 

Thamire and Wright [5] presented the heat 
transfer results, given in terms of the local and 
global Nusselt numbers and illustrated the effect of 
the flow structure on the heat transfer. 

Luo and Yang [6] used linear stability analysis to 
determine the stability of each flow mode of 
spherical Taylor-Couette flow as well as the 
temperature distribution and heat transfer rate of 
each flow mode for the steady, axisymmetric, 
incompressible Navier-Stokes equations in a thin 
gap between two concentric, differentially rotating 
spheres. Yang and Luo also in [7] focused their 
study principally on the prediction of multiple 
steady flow patterns. The construction of bifurcation 
diagrams and the linear stability analysis was 
conducted to determine whether or not the computed 
steady flow solutions are stable. They used the 
birfucation theory to discuss the origin of the 
calculated flow modes. 

Raghavarao and Srinivas [8] used the parametric 
spline function approximation to study combined 
convection in a rotating spherical annulus. 

In a related problem Sohrab [9] discussed the 
flow within a droplet either located in a uniform 
stream or at stagnation point of axisymmetric 
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counterflow and presented interesting results 
referring to the formation of Hill ’s vortices within 
the droplet as well as to the form of these vortices as 
product solutions. In addition Pearlman and Sohrab 
[10] studied the formation of ring vortices near the 
equatorial plane in the case of rotating spheres. 

Finally, Loukopoulos and Karahalios [11] 
studied the annular spherical flow numerically with 
a view to obtaining Taylor vortices at large aspect 
ratios σ such as 0.38, 0.42 and 0.48. 

In this work the results of natural convection in a 
large spherical gap for Boussinesq fluids are 
presented when Taylor vortices are formed. The 
secondary motion, the temperature field, the 
function of vorticity, the skin friction and the rate of 
heat transfer, indicate that the flow is affected from 
the rotation of the boundaries, the ratio of radii and 
the initial conditions. Finally the form and the 
number of Taylor vortices are affected from the 
presence of temperature. 
 
 
2   Problem Formulation 
We consider the unsteady flow of a viscous 
incompressible and Newtonian fluid between two 
concentric and impermeable spheres. Let or  and ir  
be the radius of the outer and of the inner sphere, 
respectively. The subscripts i and o correspond to 
the inner and to the outer sphere. The overbar 
signifies dimensional quantities. The two shells 
rotate about their common vertical diameter with 
angular velocities iΩ  and oΩ  and they are 
maintained at constant temperatures, iT  and oT , 
where i oT >T . In addition a homogeneous gravity 
field acts parallel to the axis of rotation, Fig. 1. In 
spherical coordinates ( )r,θ,φ , let ( )r θ φu ,u ,u  be the 

velocity components of the fluid.  
 

 
Fig. 1. Spherical annulus. 

The flow is described by Navier-Stokes 
equations of motion 
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the continuity equation  
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where T  denotes the fluid temperature at the point 
( )B r,θ,φ , F  is the external force per unit mass 

acting on the fluid, ρ  is the density, ν  is the 
coefficient of the kinematic viscosity, pc  is the 
specific heat at constant pressure of the fluid, κ  is 
the coefficient of thermal conductivity and  
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Since the flow is symmetric about the axis of 

rotation, all quantities are independent of the 
azimuthal angle φ . 

The boundary conditions of the problem are: 
 

Inner sphere ir = r : ru =0 , θu =0 , iT =T . 
 
Outer sphere or = r : ru =0 , θu =0 , oT =T . 
 
 
3   Problem Solution 
 
 
3.1 Numerical technique 
For the solution of the problem, which is described 
by a coupled and non linear system of PDEs, with 
their appropriate boundary conditions, the stream 
function - vorticity formulation is used. In the 
numerical approach these equations are solved by 
dividing the region on a meridional plane i or r r≤ ≤ , 
0 θ π≤ ≤  into a grid of mesh points formed by lines 
of constant r  and constant θ . The equations are 
approximated in terms of finite differences at each 
point. Next, an efficient numerical technique, 
constructed by Loukopoulos [12] is used in order 
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that an algebraic system of linear equations is 
obtained of which the matrices of the coefficients of 
the unknowns are diagonally dominant. 
Accordingly, the corresponding equations can be 
solved by iterative methods (i.e. SOR) and finally a 
time-marching solution can be obtained. This 
technique can be applied to 3D or 2D flow motions 
and has also been used in the case of biomagnetic 
fluid dynamics (BFD) by Loukopoulos and 
Tzirtzilakis [13]. 
 
 
3.2 Spherical annular gap σ=0.38 
Depending on the aspect ratio ( )o i iσ= r -r r , the 

Grashof number ( )3
i i oGr= r β g T -T ν  and the 

Reynolds number of the flow 2
c iRe=Ω  r ν , 

spherical Couette flow exhibits certain states 
characterized by the formation of Taylor vortices. In 
the above notations cΩ  is the characteristic angular 
velocity of the inner sphere, β  is the thermal 
expansion coefficient and g  is the acceleration of 
gravity. Additionally, we consider that the Prandtl 
number pPr=ρ c κν  is unity in all our calculations.  

Our main effort is focused on the case of large 
gaps. In our study both sells are set into rotation 
from rest with different angular accelerations. 
Actually, for σ = 0.38 and 0.42 we start at t =0  with 
zero initial conditions at both boundaries and impose 
a stepwise variation in the Reynolds number and in 
the angular velocities according to the scheme 

0Re= Re n∆t , i cΩ =Ω n∆t  and o cΩ =-0.3Ω n∆t , 
where n = 0,1,2,3… and 0Re  is the final value of 
the Reynolds number, until t = n∆t =1 . In the above 
notation ∆t is the dimensionless time-step. Next, for 
t 1≥ , we keep constant the Reynolds number of the 
flow and the angular velocity of the inner sphere and 
decelerate the counterrotating outer sphere to zero, 
with the same time-step as before. Thus oΩ =0  at 
t = 2  and from then on the only varying independent 
parameter is time. 

The most important flow and heat transfer 
characteristics are the local skin friction coefficient 
and the local rate of heat transfer coefficient. These 
quantities are defined by the following relations 
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are the wall shear stresses and ( )
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is the heat flux between the fluid and the spheres. 
The indices θ  and φ  denote the secondary and the 
primary flow, while cu  is a characteristic velocity 
and ir  a characteristic length. By the use of 
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(where ru and θu  are the radial and meridional 
components of velocity respectively, Ψ  is the 
stream function, χ  is the function of circumferential 
velocity and T  is the function of temperature), the 
previous mentioned quantities can be written as 
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TNu
r

∂
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∂
, where Nu  is the Nusselt number. 

 
Figure 2(a) shows the 0-vortex flow mode at 

Re=1050 , 3Gr =3.805×10 , σ=0.38  and -3∆t =10 . 
For simplicity, we depict the domain as rectangular, 
although it is actually curved. The solid curves 
designate counter-clockwise circulation, and the 
dashed curves clockwise circulation. In these flows, 
Ekman pumping causes fluid to be thrown outward 
centrifugally along the rotating inner sphere and 
pulled from the center of the stationary outer sphere, 
causing large-scale meridional flow whose direction 
is counter-clockwise in the northern hemisphere, and 
clockwise in the southern hemisphere. This large-
scale circulation can be seen in all flows with non-
zero Reynolds numbers. 
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Fig. 2: Different modes of flow at the same 
supercritical Reynolds number Re=1050 , 

3Gr =3.805×10  and σ=0.38 . Lines of constant 
streamfunction, temperature and a function of 
vorticity are plotted, (a, b, c ) 0-vortex, (d, e, f) 1-
vortex. 

 
In Figs. 2(b) and 2(c) we show the isotherms and 

the distribution of the vorticity function in the 
meridional plane for the 0-vortex mode at 
Re=1050 , 3Gr =3.805×10  and σ=0.38 . 

In Fig. 2(d) we have plotted the streamlines 
distribution of the 1-vortex mode and in Fig. 2(e) we 
show the isotherms for the same mode for 
Re=1050 , 3Gr =3.805×10  and σ=0.38 . The 
streamlines distribution of the mode shows radial 
inflow formed at the poles and the equator, and 
radial outflow formed between the vortices and 
large-scale cells on either side of the equator. 
Furthermore, isotherms twisted outward or inward at 
certain locations correspond to the radial outflow 
and inflow respectively. Finally, the lines of the 
vorticity function are presented in Fig. 2(f). 

Figure 3(a) shows the local hemispheric Nusselt 
number distributions for 0-vortex mode when 
Re=1050 , 3Gr =3.805×10  and σ=0.38 . The solid 
and dashed lines depict the local Nusselt numbers 
for the inner and the outer spheres ( iNu , oNu ), 
respectively. 
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Fig. 3: (a) Local Nusselt number distribution of 0-
vortex mode, (b) Local Nusselt number distribution 
of 1-vortex mode. 
 

Fig. 3(b) shows the local Nusselt number 
distributions for 1-vortex mode when Re=1050 , 

3Gr =3.805×10  and σ=0.38 . iNu  and oNu  
distribution tendencies can thus be determined by 
these radial inflow and outflow characteristics. At 
the poles and equator, iNu  and oNu  are locally 
maxima and minima, respectively. However, at the 
boundaries between the vortices and large-scale 
cells, iNu  and oNu are locally minima and maxima, 
respectively.  
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Fig. 4: Local skin friction coefficient, (a) 0-vortex 
(secondary flow), (b) 0-vortex (primary flow), (c) 1-
vortex (secondary flow), (d) 1-vortex (primary 
flow). 
 

Figure 4 presents the local skin friction 
coefficient, in the case of 0-vortex (secondary flow, 
Fig. 4(a)), 0-vortex (primary flow, 4(b)), 1-vortex 
(secondary flow, 4(c)) and 1-vortex (primary flow, 
4(d)), respectively. 

With the use of the wall shear parameter and the 
relations (1) to (3) it is possible to calculate the Drag 

iD  and oD  acting on the inner and outer sphere, 
respectively. So, the drag is given by the relations 
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Calculation of the above mentioned integral 

gives that θ θο iD D =0.6383 and 

φ φο i
D D =0.3198  for the 0-vortex flow and 

θ θο iD D =0.6367  and φ φο i
0.3416D D =  for the 

case of 1-vortex flow. 
 
From the previous results, the following 

conclusions can be drawn: 
i) For the 0-vortex mode the drag acting on the outer 
sphere is 36.17% less than that of the inner for the 
secondary flow and 68.02% for the primary flow. 
ii) For the 1-vortex mode the drag acting on the 
outer sphere is 36.33% less than that of the inner for 
the secondary flow and 65.84% for the primary 
flow. 
iii) The foregoing calculations show that the drag 
ratios for the secondary and the primary flow are 
nearly the same for both flow modes. Actually there 
is a slight decrease in the secondary-flow drag ratio 
and a slight increase in the primary-flow drag ratio 
when the flow mode changes from 0-vortex mode to 
1-vortex mode. 

The rate of heat transfer between a sphere and 
the fluid, i.e. the thermal energy convected from a 
sphere to the fluid or reversely, per unit area and per 
unit time (J m-2 s-1) is given from the Fourier law of 
thermal conductivity 
 

i o

i o
wall

r=1,1+σr=r ,r

T -TT Tq = k k
r R r

⎛ ⎞∂ ∂⎛ ⎞− = −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
. 

 
From the previous relation it is possible to 

calculate the thermal energy iQ  and oQ  convected 
from the inner sphere to the fluid and from the fluid 
to the outer sphere, respectively. So, we have the 
relation 
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π πi o
i,o wall0 0

r=1,1+σ

T -T TQ q dθ k dθ
R r

∂⎛ ⎞= = − ⎜ ⎟∂⎝ ⎠∫ ∫ . 

 
Calculating of the previous mentioned integral 

we obtain that i oQ Q =3.07  in the case of 0-vortex 
mode and i oQ Q = 2.88  in the case of 1-vortex 
mode. Consequently, the thermal energy convected 
from the inner sphere to the fluid is 207% bigger 
than that convected from the fluid to the outer 
sphere in the case of 0-vortex mode and 188% 
bigger than that convected from the fluid to the outer 
sphere in the case of 1-vortex mode. 
 
 
4   Conclusions 
We have studied the natural convection in large 
rotating spherical shells when Taylor vortices are 
present. Also, we have demonstrated that Taylor 
vortices are affected from the temperature field. 
Finally, we have computed the most important flow 
and heat transfer characteristics and showed that the 
drag acting on the outer sphere is smaller than that 
of the inner for the secondary and the primary flow 
in the case of 0-vortex mode and 1-vortex mode. 
Also, the thermal energy convected from the inner 
sphere to the fluid is bigger than that convected from 
the fluid to the outer sphere for both modes of the 
flow. 
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