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Identification of dynamic non-linear models
of aircrafts with big incidence angles
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Abstract- Starting from a non-linear description of the longitudinal move of aircrafts with big incidence angles, in
this paper one makes an identification structure for the model’s unknown parameters using the second method
Liapunov algorithm. One also presents the simulation program and a characteristics family obtained with this
program. These express state variables’ variation in time as response of the system to longitudinal command of the
aircraft and identification errors variation. The simulation result differ from the ones obtained by others authors in

papers.
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1 Introduction

The subject of the study is identification of aircrafts
with big incidence angles (very maneuverable aircrafts
and agile rackets), described by non-linear equations.
The linear state vector is replaced by one formed by
non-linear functions of state variables. The model
matrix, obtained by identification, tends to the
system’s matrix.

An algorithm based on second Liapunov method is
used for non-linear model’s identification. The system
input and model input is elevator deflection. State
variables are: flying velocity, incidence angle, pitch
angular velocity, lift coefficient and pitch aerodynamic
coefficient.

Simulation program is made in Matlab medium.
Simulations results are state variables’ variations of

the aircraft and model and time variations of state
variables of the model towards the ones of aircraft.

The system structure and obtained results differ from
the ones presented in references [4].

2 Model’s identification of the aircraft

longitudinal move

An algorithm for unknown parameters’ identification
of the non-linear dynamic multivariable systems [1]
may be used with good results to non-linear
longitudinal dynamic’s identification for an aircraft
with big incidence angle. The algorithm is based on
second Liapunov method. An algorithm based on this
method is presented in [2].
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Non-linear dynamic of the aircraft is described by
state equation [3]:

i = Af(x,u), x(tg) = xo , (1)
where x is the state vector (nx1), u - the command

vector (mx1), f - non-linear known vectorial function

and 4 - unknown matrix; the system’s parameters
may be obtain experimentally. The non-linear model
of the aircraft’s move is described by the state
equation:

iy = Ay f Ceag ) xag (1) = X, (2)

the coefficients of matrix 4,, will be determinated.
The matrix 4,
convergence condition:

may be calculated from the

Ay () =o. 3)

lim [AA4(¢)] = tim || A(¢)-
t—o t—0

Noting with Ax = x—x,, and with:
Af(x,xM,u)=f(x,u)—f(xM,u) 4

and decaying equation (2) from equation (4) one
results:
e=Ax— AMAf(x,xM,u) = AAf(x,u), (5)

where A4 is the solution of equation [4]:

2i+1
Ad= z 2 FT (e, u)M, Aty ) = Ady . (6)
Using the second Liapunov method, in [4] one
demonstrates that 4,, verifies equation
20+l
Ay =A+Zezj+l T (oM, Ayltg) = Ay, (7

i=0
the initial values of 4;,, ’s components may be chosen

zero; matrix M is defined as follows:
M =diadm ],m (£)=0.05+expE10x). )

Longitudinal move’s dynamic of an aircraft with
big incidence angle is described by state equation:

% = Af (x)+Bu, 9)
where:
M=l x» xoxoxs oo 0 6 07 F 8 7 8 g gl
(10)
xp =AV,xy =Aa,x3 = Aw, ,x4 = Ac,
(lift coefficient’s variation), x5 =AC,, (aerodynamic

moment coefficient’s variation), u=3J, (the elevator

deflection) and:

@ aa; 0 000000 000 0 0
G @y a3y 00 000 0 0 0 0 0 0
Aoy ap ag 0 asag 0 0 00 0 0 0 0 0
a ap ag ay 0 0 @y ag @y @i w11 a2 %3 s 0
@) ap a3 0 a5 0 asy ag g as0 a1y G2 Gz O g5
B4h1 by hs e bl

(11)
Function f(x,) has the form:

SToad=Bonr s s Xar X s N Xy S By B By Y s Gk
(12)
Using (1)+(11) one obtains the block scheme (Fig. 1).

L

(@]
Fig.1.

3 Numerical simulation results
For example, the elements of matrix 4 are chosen as
values closed the ones from [5], [6]:

=-1.85;a,, =-2.9;a,; =-0.85;a,, = -5;
212’2 =-3;a,; =18.1;a,, = 30;a;, =-0.25;
30 = 8853 =-0.1;a; 5 = -14;a, ¢ = -350;
a,, =-0.15;a,, =0.08;a,; = -0.2;a,, = -3.9;
a,; =-0.1;a,5 =0.19;a,, = 0.34;a,,, = 0.25; (13)
a,, =0.15a,, =-0.12a,,, =0.2;a,,, =-0.12;
=0.1;a,, = -0.04;a,, = -0.1;a,; = -4.3;
a, =0.058;a5, = 0.16;a5, = 0.29;a,,, = 0.2;
ag,, =-0.05a,,, =0.12;a, , = -0.05;a  =-0.09
and:
T=[1 29 11 1]5, =1grd. (14)
The algorithm for longitudinal move’s

identification is:
- matrices 4 , B and elevator deflection (5 p)

presentation;
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- matrix 4,, initialization (for example 4,,(¢)=0);

-vectors [ initialization (for example

f=ru=0)

for k=1:step_number,

begin

x calculus using equation (9);

x determination through x integration;
f calculus using (10);

and fj,

- Xy, calculus using an equation of type (9) with
A=Ay and f=fy;
- x;s determination through x,, integration;

- fyr calculus using an equation of type (11);

Af calculus using (4);

error e’s calculus using (5);
matrix M calculus using (8);

- 4y, calculus using (7);

- Ay, determination through matrix 4,, s

integration;
end
The Matlab program based on this algorithm is:

close all; clear all;
all=-1.85;a12=-2.9;a13=-0.85;a21=-5;a22=-3;
a23=18.1;a24=30;a31=-0.25;a32=8;a33=-0.1;
a35=-14;a36=-350;a41=-0.15;a42=0.08;a43=-0.2;
a44=-3.9;a47=-0.1;a48=0.19;a49=0.34;a410=0.25;
a411=0.15;a412=-0.12;a413=0.2;a414=-0.12;a51=0.1;
a52=-0.04;a53=-0.1;a55=-4.3;a57=0.058;a58=0.16;
a59=0.29;a510=0.2;a511=-0.05;a512=0.12;a513=-
0.05;
a515=-0.09;t=0;u=1;B=[3.1;2.9;1;1;1];p=0.01;
A=[al1al2al3000000000000;
a21a22a23a240000000000 0;
a31a32a330a35a36000000000;
a4l a42 a43 a44 0 0 a47 a48 a49 a410 a411
a412 a413 a414 0; a51 a52 a53 0 a55 0a57
a58 a59 a510a511 a512 a513 0 a515];
for i=1:5,

for j=1:15,

AM(1,))=0;

end
end
for i=1:15,

™M(1,1)=0;1(1,1)=0;
end
alfa(1)=f(2); V(1)=f(1);omegay(1)=f(3);cp(1)=f(4);
cm(1)=f(5); alfaM(1)=tM(1); VM(1)=tM(2);
omegayM(1)=tM(3);cpM(1)=tM(4);cmM(1)=tM(5);

for k=1:20,
xp=A*f+B*u; x=xp*p;
x1=x(1);x2=x(2);x3=x(3);x4=x(4);x5=x(5);x6=x2*X5;
x8=x1"3;x10=x2"2;x11=x2"3;x13=x3"3;
x14=x4"3;x15=x5"3;
if x1<0
x7=-((abs(x1))*(1/3));
else
x7=x1(1/3);
end %ifx1
if x2<0
x9=-((abs(x2))"(1/3));
else
x9=x2"(1/3);
end %if x2
1f x3<0
x12=-((abs(x3))"(1/3));
else
x12=x3"(1/3);
end %if x3
=[x1;x2;x3;x4;x5;x6;x7;x8;x9;x10;x11;x12;x13;x14;
x15]; xMp=AM*fM+B*u; xM=xMp*p;
xM1=xM(1);xM2=xM(2);xM3=xM(3);xM4=xM(4);x
MS5=xM(5);xM6=xM2*xMS5;
XM8=xM1"3;xM10=xM2"2;xM11=xM2"3;xM13=x
M3"3;xM14=xM4"3;xM15=xM5"3;
if xM1<0
xM7=-((abs(xM1))*(1/3));
else
xM7=xM17(1/3);
end %if xM1
if xM2<0
xM9=-((abs(xM2))"(1/3));
else
xM9=xM2*(1/3);
end %if xM2
if xM3<0
xM12=-((abs(xM3))*(1/3));
else
xM12=xM23"(1/3);
end %if xM3
fM=[XxM1;xM2;xM3;xM4;xM5;xM6;xM7;xM8;xM9;
xM10;xM11;xM12;xM13;xM14;xM15];
alfa(k+1)=f(2);V(k+1)=f(1);omegay(k+1)=f(3);cp(k+1
)=1(4);em(k+1)=£(5);
IfaM(k+1)=tM(1);VM(k+1)=tM(2);
omegayM(k+1)=tM(3);cpM(k+1)=tM(4);cmM(k+1)=f
M(5); dxp=xp-xMp; df=f-fM; e=dxp-AM*df;
m=0.05+exp(-10*t); t=t+p;
for 1=1:15,
for j=1:15,
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if i==j
M(ij)=m;
else
M(i,))=0;
end %if
end %forj
end %for i
S=zeros(5,1);
for b=1:5,
if e(1)<0
eel=~((abs(e(1)))"((2*b-1)/3));
else
eel=e(1)((2*b-1)/3);
end % ifeel
if e(2)<0
ee2=-((abs(e(2)))"((2*b-1)/3));
else
ee2=e(2)"((2*b-1)/3);
end % ifee2
if e(3)<0
ee3=-((abs(e(3)))"((2*b-1)/3));
else
ee3=e(1)((2*b-1)/3);
end % ifee3
if e(4)<0
eed4=-((abs(e(4)))"((2*b-1)/3));
else
eed=e(4)"((2*b-1)/3);
end % ifeed
if e(5)<0
ee5=-((abs(e(5)))"((2*b-1)/3));
else
ee5=e(5)N((2*b-1)/3);
end % ifee5
ee=[eel;ee2;eel;eed;ee5]; S=S+ee;
end %forb
AMp=S*transpose(f)*M; AM=AMp*p;subplot(231);
plot(alfa);hold on;
plot(alfaM,'r");grid;xlabel("Timp[s]');
subplot(232);plot(V);hold on;plot(VM,'r");grid;
xlabel('Timp[s]");subplot(233);plot(omegay);hold
on;plot(omegayM,'r");grid;xlabel('Timp[s]');
subplot(234);plot(cp);hold on;plot(cpM,'t");grid;
xlabel('Timp[s]");subplot(235);plot(cm);hold on;
plot(cmM,'r");grid;xlabel('Timp([s]'); h=figure;
al=alfa-alfaM;a2=V-VM;a3=omegay-omegayM;
ad=cp-cpM;a5=cm-cmM;subplot(231);plot(al);
grid;xlabel('Timp[s]');subplot(232);plot(a2);
grid; xlabel('Timp[s]');subplot(233);plot(a3);grid;
xlabel("Timp[s]');subplot(234);plot(a4);grid;
xlabel("Timp[s]'); subplot(235);plot(as5);grid;

xlabel("Timp[s]');
The program identifies longitudinal move of an
aircraft and represents the curves that express the

variables x; () and xy,, (t)(i :1,_5) in fig.1 and the errors

A (i=15) in fig2. For figl AV (fig.l.a),
Ac (fig.1.b), Aw,, (fig.1.0), Ac, (fig.1.d), AC,, (fig.1.¢)

are represented with continuous blue line, while the

variables AV, , Aay, , \ s Acy, and AC,, are

represented with dash dot red line. Comparing these
characteristics with the ones from [1], obtained for
u = 0 which express the instability of the longitudinal
move of an aircraft with big incidence angle, one
observes that the ones from fig.1 and fig.2 for
u=3, =0 express the stability of the longitudinal
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Fig.2.

In fig.2 the five components of the error vector
Ax=x-x); has been represented ( Ax; (fig.2.a),

Ax, (fig.2.b), Ax; (fig.2.c), Ax, (fig.2.d), Axs and
(fig.2.e)).
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4 Conclusion

This work presets the structure of a system for non-
linear model identification for the longitudinal move
of the aircrafts with big incidence angles, instable in
generally because of the aerodynamic turbulences. The
simulation program and the results of it are also
presented (the time variations of state variables of the
model as response of the system to longitudinal
command of the aircraft and the functions that express
identification errors). The obtained result differs from
the ones obtained by others authors.
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