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Abstract: - Parameter identification scheme and discrete-time adaptive sliding-mode controller applied to 

Pioneer 3-DX wheeled mobile robot (WMR) are presented in this paper. The dynamical model for mobile 

robot with one pair of active wheels, time–varying mass and moment of inertia have been used in sliding-

mode control. Two sliding-mode controllers corresponding to angular and position motion have been 

designed. Two closed-loop, on-line parameter estimators have been used in order to achieve robustness against 

parameter uncertainties (robot mass and moment of inertia). Closed-loop circular trajectory tracking Pioneer 3-

DX control results are presented. 
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1   Introduction 
Different approaches have been proposed in the 

literature for output tracking of one pair of active 

wheels mobile robots (WMR), [2] and [3]. The 

control problem of non-holonomic systems when 

there are model uncertainties has been widely 

addressed. Relatively few results have been 

presented about the robustness of WMR control 

concerning model uncertainties and external 

disturbances. The structural (parameter) and/or un-

structural uncertainties in the model of the MIMO 

non-linear systems and the difficulties in parameter 

identification make necessary the design of the 

controller such that the closed loop robustness is 

achieved. It is well known that the robustness to 

structural, un-structural uncertainties and external 

disturbances of the WMR closed loop can be 

achieved with a variable structure controller, [1], [5] 

and [12]. Maintaining the system on a sliding 

surface weakens the influence of the uncertainties in 

the closed loop and quickly leads to an equilibrium 

point. The main advantage of the discrete-time 

sliding mode control is with the direct and easy real-

time implementation. Since the sliding mode control 

is original from continuous time, it is more difficult 

to choose a synthesis in discrete-time. The discrete-

time sliding mode control, [12], is quite different of 

performing the control design in the continuous-time 

domain. Discrete-time sliding-mode controller 

design is usually based on an approximate sliding-

mode system evolution due to the non unique 

attractiveness condition and approximate evolution 

on sliding surface, [6], [12]. The robust trajectory 

tracking problem has been addressed in [13] using a 

continuous time sliding-mode control. The 

performing control design, using the kinematical 

model of the vehicle does not explicitly take into 

account parameters variation (robot mass and 

moment of inertia) and external disturbances 

(frictions and viscous forces), [4]. The controller 

design using the WMR dynamical model, where 

uncertainties in the robot physical parameters can be 

explicitly taken into account, tends to interest actual 

researches on this field. In this paper, the trajectory 

tracking problem for Pioneer 3-DX one pair of 

active wheels type WMR, in the presence of 

uncertainties (time-varying mass and moment of 

inertia), has been solved by discrete-time sliding-

mode controllers based on the discrete-time WMR 

dynamical model. Two closed loop, on-line 

parameter estimators have been used against 

parameter uncertainties. The paper is organized as 

follows. In Section 2 the dynamical model of one 

pair of active wheels Pioneer 3-DX mobile robot is 

presented. Also, the discrete-time state space model, 

its uncertainties, non-holonomic constraint and the 

output tracking errors of Pioneer 3-DX are 

presented. Section 3 describes on-line parameter 
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estimators corresponding to angular and position 

motion. The sliding adaptive controllers, associated 

to angular and position motion, are designed in 

Section 4 and 5. Pioneer 3-DX sliding-mode closed 

loop simulation results are presented in Section 6 

and conclusions remarks in Section 7. 

 

 

2 Continuous and discrete-time 

Pioneer 3-DX dynamic model  
1) Assumption: The WMR motion is supposed to be 

pure rolling, without of any slipping. 

Figures 1 and 2 show Pioneer 3-DX with Pioneer 5-

DOF manipulator and the schema of a WMR, 

respectively. X
’
Y

’ 
is a mobile frame attached to the 

unicycle and XY defines an inertial reference 

system. The vehicle dynamics is fully described by a 

three dimensional vector of generalized coordinates 

( )tq  constituted by the coordinates ( ) ( )( )( )tytx ,  of 

the midpoint between the two driving wheels, and 

by the orientation angle ( )tΦ . The velocity 

constraint (non-holonomic constraint) of vehicle 

motion is 0cossin =Φ−Φ yx && . Define by rτ  and 

lτ  the torques provided by DC motors to the right 

and left wheel, respectively. The vehicle is 

described by the following dynamical model as in  

( )lr

lr

lr

r

D
I

r
xmym

r
ymxm

ττ

ττ

ττ

−=Φ

Φ
+

+Φ=

Φ
+

+Φ−=

2

sin

cos

&&

&&&&

&&&&

                                 (1) 

where m=10kg, I, D=40cmm, r=9.5cmm are the 

robot mass, moment of inertia, distance between 

wheels and wheels radius, respectively. The real 

mass of the WMR is supposed to be time-varying 

with bounded uncertainty with known nominal 

mass. Due to the time-varying mass, the moment of 

inertia becomes time-depending with bounded 

uncertainty. 

2) Assumption: Even if the moment of inertia is 

considered time-varying, the robotic mass is 

supposed to be uniformly distributed all the time. 

Let define two parameters corresponding to the 

angular and position motion, such as: 

( ) ( )( )rtIDt 2=α , ( ) ( )( )rtmt 1=π . The real values 

of the parameters are time-varying with upper 

bounded uncertainties 

( ) ( )

( ) ( ) max

max

;

;

πππππ

ααααα

∆≤∆∆−=

∆≤∆∆−=

tt

tt

nomreal

nomreal

             (2) 

 
Fig.1. Pioneer 3-DX with 5-DOF Arm 

 

Fig.2. WMR configuration variables for angular and 

position motion. 

 

Let 6
Rx∈  be the state vector, whose elements are 

Φ===

Φ===

&&& 654

321

,,

,,

xyxxx

xyxxx
                                    (3) 

Define the control input corresponding to angular, 

lrAu ττ −=  and position motion, lrPu ττ += , 

respectively. 

The state space representation of WMR and the non-

holonomic constraint will be discretized with the 

sampling period T, replacing the derivative by a 

finite difference and using a zero-order-hold for the 

control inputs 
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      (4) 

( ) ( )( ) ( ) ( )( ) 0cossin 3534 =− kxkxkxkx                   (5) 
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k being the k
th
 time interval where the corresponding 

variable is evaluated ( kTt = ). Let ( ) 6
Rke ∈  be, the 

vector of output errors: ( ) ( ) ( )kxkxke
ref
iii −= , 

where ( ) 6,,1; L=ikx
ref
i  is the trajectory to be 

tracked. 

 

 

3 Angular and position motion on-line 

parameter estimation 
The closed loop structure, shown in figure 2, is 

proposed. For each robot motion, angular and 

position, respectively, an on-line parameter 

estimator and a sliding controller have been 

introduced. Due to the time-varying of the Pioneer 

3-DX mass, the control input parameters ( )tα and 

( )tπ  are on-line updated in order to be used in the 

corresponding sliding mode control input. The 

robustness against mass uncertainty will be assured. 

The maximum bounds of control input parameters 

corresponding to angular and linear motion will be 

used in the attractiveness condition of appropriate 

sliding surface. As will be shown in the next 

sections, the attractiveness condition of the 

corresponding sliding surface only on certain 

interval is satisfied. Outside of it, on-line parameter 

estimates will be used to compute the control input. 

Moreover, in discrete-time, the sliding condition 

with some approximation is satisfied. When the 

system is inside of the sliding sector or in the 

neighborhood of sliding surface, the parameter 

updating law can provide convergent estimates. Let 

( )kS A  and ( )kS P  be two sliding surfaces 

corresponding to the control input for angular and 

position motion, respectively. As parameter 

updating law, the recursive least squares method is 

used. The control input for angular motion has two 

terms: the first one, denoted compensation part 

)(ku
comp
A , has to compensate the rotational 

dynamics; the second one, denoted sliding mode 

part, ( )ku sm
A

, corresponds to system evolution inside 

of sliding surface neighborhood. The whole control 

input for angular motion is 

( ) ( ) ( )kukuku
sm
A

comp
AA +=                                        (6) 

The calculus and the steps for getting both 

components of the angular motion control input are 

given in Section 5. Expressing the estimated value 

for angular motion control input parameter, 

( ) ( )kk
nom ααα ˆˆ ∆−= , the next sequence, 

corresponding to recursive least squares method, [8] 

and [9], can be used to provide an estimation of the 

uncertainty scalar term ( )kα∆  at the k
th
 step 

( )
( ) ( )

( )[ ] ( )111

11

2
−−+

−−
=

∆

∆
∆

kPku

kukP
kL

A

A

α

α
α                       (7) 

( ) ( )
( ) ( ) ( )11

1

−−−

−=

∆∆

∆∆

kPkukL

kPkP

A αα

αα
                                 (8) 

( ) ( )

( ) ( )

( ) ( ) 











−−

+−−∆
+

−∆=∆

∆ 21

11ˆ

1ˆˆ

TkSku
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L
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A
sm
A
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A

α

α

αα

α

                    (9) 

1) Remark: Since for each robot motion just one 

parameter is estimated, the gain ( )kL α∆  and the 

covariance ( )kP α∆  are scalars. 

The control input for position motion, ( )kuP , has 

only sliding-mode part, ( ) ( )kuku sm
PP = . For the 

corresponding parameter, ( ) ( )kk
nom πππ ˆˆ ∆−= , 

similar updating law is used 

( )
( ) ( )

( )[ ] ( )111

11

2
−−+

−−
=

∆

∆
∆

kPku

kukP
kL

P

P

π
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( ) ( ) ( ) ( ) ( )111 −−−−= ∆∆∆∆ kPkukLkPkP πππππ (11)
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( ) ( ) 




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
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∆
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P
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P
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1

11ˆ

1ˆˆ

π

π

ππ

π

                         (12) 

where ( )kL π∆ , ( )kP π∆  have the same meaning as 

previously and ( )kSP

~
 will be defined later . 

2) Remark: For both parameter updating laws, (9) 

and (12), the expression in brackets is valid when 

the system evolutes in the neighborhood of the 

corresponding sliding surface. 

 

 

4 Angular motion sliding-mode control 

input synthesis 
The following stable sliding surface has been 

chosen, in order to design the control input for 

angular motion 

( ) ( ) ( ) 01 =−+= kAkAkS A µ                                (13) 

where 

( ) ( )
( ) ( )

( ) ( ) 













−−

−−
−=

1

1

114

225
3

kekx

kekx
arctgkxkA

ref

ref

δ

δ
      (14) 

with: ( )11−∈µ , 







∈

T

1
0, 21 δδ . Parameter µ  

and the position errors, 1e , 2e  establish the 

dynamics of sliding surface. The interval set of 

1δ and 2δ  assures the stability of position errors. If 
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the non-holonomic constraint corresponding to the 

reference trajectory 

( ) ( ) ( )( )kxkxarctgkx
refrefref
453

=                             (15) 

is taken into account, then the angular error ( )ke3  

vanish when ( )ke1 , ( )ke2  tend to zero. 

3) Remark: The sliding surface defined in (13) has 

been chosen such as whenever a sliding mode is 

achieved on it and ( )ke1 , ( )ke2  vanish, the 

orientation angle Φ  tends to its reference value. 

For computing the control input, the following 

attractiveness condition, as in [7] and [14], has been 

used: 

( ) ( ) ( )1
2

1
1 2 +∆−<+∆ kSkSkS AAA                        (16) 

where 

( ) ( ) ( )kSkSkS AAA −+=+∆ 11                             (17) 

An approximate sliding-mode evolution can be 

assured on the surface (13). If for the compensation 

part of the control input the expression 

( ) ( )
( ) ( )

( ) ( )

( ) ( ) ( ) 

















+−−++
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











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+−+

=
−
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225
12

kAkTxkx

kekx

kekx
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Tku ref

ref

nomcomp
A

µ

δ

δ

α

                          (18) 

is chosen, then, after replacing (6), (13) and (14) in 

(17), one obtains 

( ) ( )( ) ( )

( ) ( ) ( )kSkuk

kukTkS

A
comp
A

sm
A

nom
A

−∆+

∆−=+∆

α

αα21
               (19) 

With (19), (16) becomes 

( )[ ] ( )[ ]
( )[ ] ( ) ( ) ( )

( )[ ] ( )[ ] ( )[ ] 0

2

22222

2

222

<−∆+

∆∆−+

∆−

kSkukT

kukukkT

kukT

A
comp
A

comp
A

sm
A

nom

sm
A

nom

α

ααα

αα

          (20) 

Introducing the upper bound of the angular motion 

parameter uncertainty, the above second degree 

inequality can be written in the compact form 

( ) ( )

( )
( )[ ] 0

22

2

max

max

2 <−

















∆+

∆−

kS

ku

ku

T A
comp
A

sm
A

nom

α

αα
         (21) 

If ( ) 0ku sm
A

> and ( ) ( )kuTkS
comp
AA

max2 α∆> , then 

the sliding-mode part of the control input can be 

expressed as 

( ) ( ) ( ) ( )maxmax2 ααα ∆−∆−< nomcomp
AA

sm
A kuTkSku

(22) 

When ( ) 0ku sm
A

< , the inequality (21) is satisfied for 

( )
( ) ( )

max

max2

αα

α

∆−

∆−
−>

nom

comp
AA

sm
A

kuTkS
ku           (23) 

3) Remark: Both expressions of the sliding-mode 

part, (22) and (23), can be written compactly 

( )

( )
( )

max

max

2

αα

αρ

∆−

∆−

=
nom

comp
A

A
A

sm
A

ku
T

kS

ku               (24) 

where ( )11−∈Aρ . 

When ( ) ( )kuTkS
comp
AA

max2 α∆≤ , the 

attractiveness condition (16) can not be satisfied. 

The sliding mode part of the control input still can 

be computed by using estimates of parameter α∆ . 

The recursive least square method used to 

compute α̂∆ , given by (7), (8) and (9), is convergent 

only when the system evolves in the neighborhood 

of sliding surface. Therefore, an approximate sliding 

mode condition is satisfied ( ) 01 2 ≈+ TkS A . 

( )[ ] ( ) ( ) ( ) 0ˆˆ ≈∆+∆− kukkuk
comp
A

sm
A

nom ααα              (24) 

This approximate is used in order to compute the 

control input for angular motion 

( ) ( ) ( ) ( )( )kkukku
nomcomp

A
sm
A

ααα ˆˆ ∆−∆−=              (25) 

4) Remark: Using (24), the updating law (9) can be 

rewritten as 

( ) ( )

( )[ ] ( )

( ) ( ) ( ) 













−−−∆+

−−∆−
+

−∆=∆

∆ 211ˆ

11ˆ

1ˆˆ

TkSkuk

kuk
L

kk

A
comp
A

sm
A

nom

α

αα

αα

α

      (26) 

 

 

5 Position motion sliding-mode control 

input synthesis 
The following sliding surface is proposed 

( ) ( )[ ] ( )[ ]( )

( ) ( )[ ]
( ) ( )[ ]

0

1

1
21

2

125

2

114

212
5

2
4

=
















−−+

−−
−

+=

kekx

kekx

kxkxkS

ref

ref

P

δ

δ                     (27) 

Starting with the third equation of model (4), using a 

trigonometric equality and the non-holonomic 

constraint (5), the following equality holds 

( )( )
( )
( )

( )
( )

( ) ( )
( ) ( )










+

+
+








−

+

+
=

kxkx

kxkx

kx

kx

kx

kx
kTxtg

44

55

4

5

4

5
6

1

1
1

1

1
  

(28) 

Moreover, introducing the expressions of the state 

variables, from state model (4), and using the 

constraint (5), the above equality becomes 
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( )( ) ( )[ ] ( )[ ]( ) ( ) ( )

( ) ( )[ ] ( )[ ]( ) 212
5

2
46

212
5

2
46

kxkxkTx

kukTkxkxkTxtg P

+=









−+ π

    (29) 

Let define 

( ) ( )( )[ ] ( )[ ] ( )[ ]( )

( ) ( )[ ]
( ) ( )[ ]

21

2

225

2

114

212
5

2
4

1
6

1

1

cos
~

















−++

−+
−

+=
−

kekx

kekx

kxkxkTxkS

ref

ref

P

δ

δ    (30) 

The sliding motion on the surface (27) concerns the 

reduced order system of the robotic model, without 

of 3
rd

 and 6
th
 equation. The same attractiveness 

condition, as in [6], for computing the position 

motion control input has been considered 

( ) ( ) ( )1
2

1
1 2 +∆−<+∆ kSkSkS PPP                        (31) 

( ) ( ) ( )kSkSkS PPP −+=+∆ 11                             (32) 

An approximate sliding mode evolution on the 

surface (27) can be assured. Consequently of 

sliding-mode evolution on (13), the angular state 

( )kx 3  tends to hold the following expressions 

( )( ) ( ) ( )( )

( ) ( )[ ] ( ) ( )[ ]
21

2

125

2

114

1143

11

1cos

−








 −−+−−

−−=

kekxkekx

kekxkTx

refref

ref

δδ

δ

(33) 

( )( ) ( ) ( )( )

( ) ( )[ ] ( ) ( )[ ]
21

2

125

2

114

1153

11

1sin

−









−−+−−

−−=

kekxkekx

kekxkTx

refref

ref

δδ

δ

 

   (34) 

Using (28), the following expression can be 

obtained 

( )[ ] ( )[ ] ( )( )[ ]

( )[ ] ( )[ ]( ) ( )( ) ( )
2

212
5

2
4

2
6

2
5

2
4 cos11









∆−−+

=+++ −

kukTkxkx

kTxkxkx

P
nom ππ

  (35) 

With (35) and (29), (25) and (32) become 

( ) ( ) ( )( ) ( )( ) ( )kukkTxTkSkS P
nom

PP ππ ∆−−=+
−1

6cos
~

1

                            (36) 

( ) ( ) ( )

( )( ) ( )( ) ( )kukkTxT

kSkSkS

P
nom

PPP

ππ ∆−=

−=+∆

−1
6cos

~
1

              (37) 

Using (36), (37) and upper bound of position motion 

uncertainty, from (2), the second degree inequality 

can be written  

( )
( )( )

( ) ( ) ( )[ ] 0
~

cos

2

2

6

max

<−











+

∆−
kSkSku

kTx

T
PPP

nom ππ

(38) 

If ( ) 0>ku sm
P  and ( ) ( )kSkS PP

~
> , then  the sliding 

control input for position motion is 

( )
( ) ( )

( )( )[ ] ( )max1
6cos

~

ππ
ρ

∆−

−
=

− nom

PP

PP
kTxT

kSkS
ku          (39) 

where ( )10∈Pρ . When ( ) ( )kSkS PP

~
≤ , the 

attractiveness condition (31) can not be satisfied. 

The control input still can be computed using on-

line estimates for π∆ . 

5) Remark: The recursive least square method used 

to compute π∆ˆ , given by (10), (11) and (12), is 

convergent only when the system evolves in the 

neighborhood of sliding surface. Therefore, the 

approximate sliding mode condition is satisfied, 

( ) 01 ≈+kS P , i.e. 

( )( )[ ] ( )( ) ( ) ( ) 0
~

ˆcos
1

6 ≈+∆−
−

kSkukkTxT PP
nom ππ  

(40) 

From above, the control input can be expressed as 

( ) ( ) ( )( )[ ] ( )( )kkTxTkSku
nom

PP ππ ˆcos
~ 1

6 ∆−−=
−

   (41) 

6) Remark: As result of (40), (12) can be rewritten 

as 

( ) ( )

( )
( )( )[ ] ( )[ ]

( ) ( ) ( ) 













−−+−

−∆−−
+

−∆=∆

−

∆
kSkSku

kkTxT
kL

kk

PPP

nom

1
~

1

1ˆ1cos

1ˆˆ

1
6 ππ

ππ

π
    (42) 

When the system evolves in sliding-mode on the 

surface (27), can express the followings 

( ) ( ) ( )11144 −−= kekxkx
ref δ                                    (43) 

( ) ( ) ( )11255 −−= kekxkx
ref δ                                    (44) 

Therefore, output tracking error dynamics associated 

to the reduced order system can be expressed as: 

( ) ( ) ( )11 1111 −−=+ kTekeke δ                             (45) 

( ) ( ) ( )11 2222 −−=+ kTekeke δ                            (46) 

For 







∈

T

1
0, 21 δδ , the above dynamics errors are 

stable. 

 

 

6 Pioneer 3-DX sliding-mode closed 

loop control 
For testing the proposed discrete-time sliding-mode 

adaptive controller Pioneer 3-DX with on board PC 

and wireless adapter has been used in circular 

trajectory tracking. The rugged P3-DX is 44cm x 

38cm x 22cm aluminum body with 16.5cm dia drive 

wheels. The two motors use 38.3:1 gear ratios and 

contain 500-tick encoders. This differential drive 

platform is highly holonomic and can rotate in place 
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moving both wheels, or it can swing around a 

stationery wheel in a circle of 32cm radius. A rear 

caster balances the robot. The following parameters 

of model (3) were used: m=10kg, D=50cm, 

I=0,0624 kgm
2
, T=0.3s. The moment of inertia has 

been computed assuming the mass uniformly 

distributed. A linear-time varying mass additionally 

to the nominal one has been considered. More 

precisely, the robotic time-varying mass has been 

increased linearly from 12kg to 16kg. The circle 

trajectory tracking, shown in figures 3, was obtained 

for 4.0max =∆α , 033.0max =∆π . The following 

values have been chosen for the constants: 

001.0=µ , 99.0AP =ρ=ρ , 33.321 =δ=δ , 

( ) ( ) 100P0P == π∆α∆ . 
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Fig. 3. WMR closed loop response for circular 

reference and initial conditions x1(0)=33; x2(0)=33; 

x3(0)= π /7; x4(0)=-0.5; x5(0)=0.2; x6(0)=0.1. 

 

 

6 Conclusion 
Discrete-time, sliding-mode adaptive controllers and 

parameter estimators for trajectory tracking applied 

to control angular and position motion of Pioneer 3-

DX one pair of active wheels mobile robot, have 

presented in this paper. The time-varying mass and 

moment of inertia dynamical state space model have 

been undertaken in order to design the controllers. 

Even if as parameter uncertainties, only the robotic 

mass and moment of inertia have been considered, 

the proposed controllers assure closed loop 

robustness to a wide typology of parameter and 

model uncertainties and external disturbances. Two 

sliding-mode adaptive controllers have been 

designed, for angular and position motion, 

respectively. The robustness is guaranteed by 

sliding-mode controllers and by on-line parameter 

estimators. Controllers parameters, on-line updated, 

assure an approximate sliding-mode evolution even 

if the attractiveness condition is not satisfied and 

contribute to an increased robustness. 
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