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Abstract:In design of complex and large scale systems, formal verification has played an important role. However,
it is inefficiency to verify the entire systems. This article considers the case where designers of systems can extract
check-points easily in formal verification. Moreover, we propose a method by which temporal formulas can be
obtained inductively for specifications in formal verification.
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1 Introduction

Today, industrial designs are becoming more and
more complex as technology advances and demand
for higher performance increases. Especially, hard-
ware and software systems are widely used in ap-
plied field where no failure is permitted: telephone
switched network, electronic commerce, and medical
equipment, etc. The validity of a design accompa-
nies checking whether the physical design satisfies its
specification. In traditional design flow, validation is
accomplished through simulation and testing. Some
errors inside a design may exhibit nondeterministic
behaviors, and therefore, will not be reliably repeat-
able. This makes testing and debugging using simu-
lation difficult. Also, exhaustive testing for nontrivial
designs is generally infeasible, therefore, testing pro-
vides at best only a probabilistic assurance[1].

In design of complex and large scale systems, for-
mal verification has played an important role. Formal
verification ascertains whether designed systems can
be executed or specified. Various formal methods for
verification have been studied[1, 2, 3, 4]. However,
formal verification has problems of its own class too.
The major problem with automatic formal verification
is that a large amount of memory and time is often
required, because the underlying algorithm in these
methods usually involves systematic examination of
all reachable states of the system to be verified. As
the number of reachable states increases rapidly with
the size of the system, the basic algorithm by itself
becomes impractical: the number of states for the sys-
tem is often too large to check exhaustively within
the limited time and memory that is available. This
phenomenon is known as the state space explosion

problem[1, 2].
In this research, we focus on specification pro-

cess of model checking in formal verification shown
in Fig.1, and to propose a new method which can ex-
tract verification check-points inductively from mod-
eling systems. System designers can easily derive
check-points of verified systems by using the method.
The rest of this article is organized as follows: In sec-
tion 2, Formal Verification, Temporal Logic, Signal
Transition Graph are briefly explained, and in sec-
tion 3 our proposed Check-Points Extraction Method
is described by means of procedure of specification.
Moreover, some benchmarks are used for verification
to compare by SPIN model checking tool in section 4.
Finally, we summarize the discussion in section 5.

2 Preliminaries

2.1 Formal Verification
The principal validation methods for complex sys-
tems are simulation, testing, deductive verification,
and model checking. Simulation and testing both in-
volve making experiments before deploying the sys-
tem, testing is performed on the actual product. In
the case of circuits, simulation is performed on the
design of the circuit, whereas testing is performed on
the circuit itself. In both cases, these methods typi-
cally inject signals at certain points in the system and
observe the resulting signals at other points. These
methods can be a cost-efficient way to find many er-
rors. However, checking all of the possible interac-
tions and potential pitfalls using simulation and test-
ing techniques is rarely possible. Formal verification
attempts to overcome the weakness of non-exhaustive
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Figure 1: The framework of proposed method.

simulation by proving the correspondence between
some abstract specification and the design in hand.

An important issue in specifications complete-
ness. Model checking provides means for checking
that a model of the design satisfies a given specifi-
cation, but it is impossible to determine whether the
given specification covers all the properties that the
system should satisfy.

• Safety propertyexpresses that, under certain con-
ditions, nothing badwill happen.

• Liveness propertyexpress that, under certain
conditions, something goodwill eventually hap-
pen.

In this article, behaviors of a system are specified by
temporal formulas.

2.2 Temporal Logic
Temporal logic[1, 2, 4, 5] is a formalism for describ-
ing sequences of transitions between states in a reac-
tive system. In the temporal logics that we will con-
sider, time is not mentioned explicitly; instead, a for-
mula might specify thateventuallysome designated
state is reached, or that an error state isneverentered.
Properties likeeventuallyor neverare specified using
specialtemporal operators. These operators can also
be combined with boolean connectives or nested ar-
bitrarily. Temporal logics differ in the operators that
they provide and the semantics of those operators. Its
operators mimic linguistic constructions (the adverbs
”always” , ”until” , the tenses of verbs, etc.) with
the result that natural language statements and their

temporal logic formalization are fairly close. Finally,
temporal logic comes with a formal semantics, an in-
dispensable specification language tool.

2.2.1 Linear Temporal Logic(LTL)

Temporal logic allows us to formalize the properties
of a run unambiguously and concisely with the help of
a small number of special temporal operators. Most
relevant to the verification of asynchronous process
systems is a specific branch of temporal logic that is
known as linear temporal logic(LTL), commonly ab-
breviated as LTL. The semantics of LTL is defined
over infinite runs. With help of the stutter extension
rule, however, it applies equally to finite runs[1].

Here we give descriptions of LTL. LTL is a sort
of temporal logic, which has the following formulas:

• ¤ q : means thatq always holds for all successor
states on a certain path.

• ♦ q : represents thatq must be sometimes true
for only one successor state of the path, and is
similar to the formula which expresses future in
linear temporal logic.

• pUq : is thatp must be true on the path states,
beginning at the current state, untilq becomes
true.

• Xp : then simply states thatp is true in the im-
mediately following state of the run.

The correctness of properties to be verified is usu-
ally specified in LTL. The LTL is extending proposi-
tional logic with temporal operators that express how
propositions change their truth values over time. Here
we use temporal operators: Operators¤, ♦, andX
meaningglobally, sometime in the future, and next
time, respectively.

2.3 Signal Transition Graph
In order to describe highly concurrent systems, graph-
based specification methods have been widely used.
An Signal Transition Graph (STG)[6], a labeled in-
terpreted Petri Net[7], has been considered as a well-
suited specification method to describe asynchronous
circuits.

Definition 1 (Petri Net (PN)). A Petri Net is a bi-
partite directed graph consisting of 4-tuple

∑
=

(P, T, F,m0), where

1. P is a finite set of places.

2. T is a finite set of transitions, satisfyingP ∩ T =
ϕ andP ∪ T = ϕ .
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3. F is a flow relationF ⊆ (P × T ) ∪ (T × P ),
specifies binary relation between transitions and
places.

4. m0 is the initial marking of the PN.

When transitions are interpreted as rising and
falling transitions of signals of a control circuit, an
STG is one interpretation of a PN.

Definition 2 (Signal Transition Graph (STG)). Let
J be a set of signals of a network, ASignal Transition
Graphdefined onJ is a Petri Net

∑
J = ⟨ P, T, F,M0

⟩ with T : J → { + , - } .

Each transition of the STG is interpreted as a ris-
ing transition or a falling transition of a signal.

Consider an arbiter module shown inFig.2. An
STG for the arbiter module is shown inFig.3, where
’+’ mean a rising edge and ’-’ means a falling edge of
a certain signal, respectively. This example uses two
signalsu0 andu1. Black circle on a transition edge
indicates a token. A transition is enabled when all
input places have at least one token. When an enabled
transition fires, it removes one token from each input
place and adds one token to each output place.

user1 user2

arbiter

u1i u1o u2i u2o

Figure 2: An arbiter module.

u0i+ u1o+ u0i- u1o-

u0o+ u1i+ u0o- u1i-

Figure 3: A signal transition graph forFig.2

3 Check-Points Extraction Method

3.1 Strong/Weak Temporal Order Relation
In verifying behaviors of a system, checking all sig-
nal events is inefficient. Reducing signal events to be

checked is necessary for specifying behaviors of the
system. Here, We consider a system which has 3-
inputs (a , b , c) and 2-outputs (x , y). Suppose that
behaviors of the system occur asa → x → b → c →
y → a , repeatedly. All relations of the signal events
can be indicated as follows:

{(a , x) , (a , y) , (x , b) , (b , c) , (b , y) , (c , y)},

where (a , x) indicates that outputx occur after input
a . Although outputy is not an immediate successor
of input a , (a, y) can be considered because outputy
must occur after inputa in the future. Definitions of
strong/weak temporal order relationsare as follows:

Definition 3 (strong temporal order relation). A
strong temporal order relation is any inverse input-
output relation of event sequences.

Here, we focus on relation (x , b). We notice that (x
, b) indicates an inverse relation of input and output
events. However, it is not necessary that inputb must
occur after outputy in many cases excepting systems
of 1-input and 1-output. Thus such an inverse input-
output relation can be reduced by astrong temporal
order relation.

Definition 4 (weak temporal order relation). A
weak temporal order relation is any relation of input
signal events.

Further, we focus on relation (b , c). We notice that the
relation only indicates inputs. Outputy is a successor
of inputsb andc by relations (b , y) and (c , y). On the
other hand, outputy can occur by rendezvous of inputs
b andc. Outputy can occur independently of relation
(b , c). Therefore, such a relation can be reduced by a
weak temporal order relation.

Thus, behaviors of the system can be specified by in-
troducing strong/weak temporal order relations as fol-
lows:

{ (a , x) , (a , y) , (b , y) , (c , y) }

Its specification shows that outputx can occur after
input a and outputy can occur by rendezvous inputs
a, b, andc.

3.2 Converting STG to State Graph

To explain the procedure of the proposed method, we
especially consider an arbiter module shown inFig.2.
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Thus we describe specification of temporal formulas
for the arbiter module. The STG of the arbiter module
can be drawn inFig.3. For the STG, states are con-
nected with labeled edges as shown inFig.4 to rep-
resent order relations of events. Converting the STG
to the state graph can be made by Petrify tool[8] au-
tomatically. A branch expression forFig.4 is shown
in Fig.5. The procedure of the proposed specification
method is described in the succeeding sections.
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Figure 4: A state graph forFig.3.
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Figure 5: A branch expression for the state graph.

3.3 Procedure of Specification

In this section, we describe the procedure of the pro-
posed specification method shown inFig.6. This pro-
cedure corresponds to the part in the wavy arrow line
in Fig.1. The procedure is composed of five steps
shown inFig.6. Here, we explain the procedure as

[STEP.1]

Extracting all paths from branch expression.

[STEP.2]

Extracting IO(Input-Output) relations.

[STEP.3]

Introducing temporal operators to an IO relation.

[STEP.4]

Specifying all paths using temporal formulas.

[STEP.5]

Combining transition relations for the same output.

Figure 6: Procedure of Specification.

follows:

[STEP.1]
In this step, event sequences are extracted from branch
expression, for example, path (A), (B), (C), (D) and
(E) are extracted fromFig.5.

(A) u0i+ u0o+ u1i+ u1o+ u0i− u0o− u1i− u1o−
(B) u0in+u0o+ u1i+ u1o+ u0o− u1i− u0i− u1o−
(C) u0i+ u0o+ u1o+ u0i− u1i+ u0o− u1i− u1o−
(D) u0i+ u1o+ u0o+ u0i− u1i+ u0o− u1i− u1o−
(E) u0i+ u1o+ u0i− u0o+ u1i+ u0o− u1i− u1o−

[STEP.2]
In this step, checked signal events can be reduced by
introducingstrong/weak temporal order relations.

(A) {(u0i+ , u0o+), (u0i+ , u1o+), (u1i+ , u1o+),
(u1i+ , u0o−), (u0i− , u0o−), (u0i− , u1o−),
(u1i− , u1o−)}

(B) {(u0i+ , u0o+), (u0i+ , u1o+), (u0i+ , u0o−),
(u1i+ , u1o+), (u1i+ , u0o−), (u1i− , u1o−),
(u0i− , u1o−)}

(C) {(u0i+ , u0o+), (u0i+ , u1o+), (u0i− , u0o−),
(u0i− , u1o−), (u1i+ , u0o−), (u1i− , u1o−)}

(D) {(u0i+ , u1o+), (u0i+ , u0o+), (u0i− , u0o−),
(u0i− , u1o−), (u1i+ , u0o−), (u1i+ , u1o−),
(u1i− , u1o−)}
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(E) {(u0i+ , u1o+), (u0i− , u0o+), (u0i− , u0o−),
(u0i− , u1o−), (u1i+ , u0o−), (u1i− , u1o−)}

[STEP.3]
In each path, if IO relation shows that there is immedi-
ate successor, specified asX operator, otherwise spec-
ified as♦ operator.

(A) {X(u0i+ , u0o+), ♦(u0i+ , u1o+), X(u1i+ , u1o+),
♦(u1i+ , u0o−), X(u0i− , u0o−), ♦(u0i− , u1o−),
X(u1i− , u1o−)}

(B) {X(u0i+ , u0o+), ♦(u0i+ , u1o+), ♦(u0i+ , u0o−),
X(u1i+ , u1o+), ♦(u1i+ , u0o−), ♦(u1i− , u1o−),
X(u0i− , u1o−)}

(C) {X(u0i+ , u0o+), ♦(u0i+ , u1o+), ♦(u0i− , u0o−),
♦(u0i− , u1o−), X(u1i+ , u0o−), ♦(u1i− , u1o−)}

(D) {X(u0i+ , u1o+), ♦(u0i+ , u0o+), ♦(u0i− , u0o−),
♦(u0i− , u1o−), X(u1i+ , u0o−), ♦(u1i+ , u1o−),
X(u1i− , u1o−)}

(E) {X(u0i+ , u1o+), X(u0i− , u0o+), ♦ (u0i− , u0o−),
♦(u0i− , u1o−), X(u1i+ , u0o−), X(u1i− , u1o−)}

[STEP.4]
In all paths, relations of the same temporal operator
and the same IO can be extracted. Otherwise only the
same IO relation can be extracted. Since♦ expresses
”sometime in the future,” the nextoperatorX can be
covered asX ⊆ ♦ in order to applyPartial Order Re-
duction. Thus, the extracted same IO relation can be
gathered by♦.

¤ [ ♦(u0i+ , u1o+) ∨ ♦u1i+ , u0o−)
∨ ♦(u0i− , u1o−) ∨ ♦(u1i− , u1o−)
∨ ♦(u0i+ , u0o+) ∨ ♦(u1i+ , u1o+)
∨ ♦(u0i− , u0o−) ∨ ♦(u0i+ , u0o−)
∨ ♦(u1i+ , u1o−) ∨ ♦(u0i− , u0o+) ]

[STEP.5]
In all paths, relations of the same output can be com-
bined.

¤ [ ♦(u0i+ , u0o+) ∨ ♦(u0i+ ∧ u1i+ , u0o−)
∨ ♦(u0i+ ∧ u1i+ , u1o+) ∨ ♦(u0i− ∧ u1i+ , u1o−)]

Check-points can be extracted by repeating the
above-mentioned steps.

4 Verification Results
We show some bench marks in theTable.1. All these
model verifications are performed on an 2.4GHz Core
2 Duo processor under Linux with 2GB of available
RAM. In this article, all circuits are verified by SPIN
version 4.2.9 and XSPIN version 4.3.0[1, 3, 9, 10].

For each model, we report the number of states
variables necessary to represent the corresponding
model, transitions, and memory required by the sys-
tems to analyze the model. For small models such as
queue and mutex, results are not much different be-
tween the two methods. On the other hand, as the
models become larger, the effect begins to appear in
the results. It is remarkable especially for elevator
control systems.

5 Conclusion
Formal verification plays an important role in large
scale and complex systems. However, it is ineffi-
ciency to verify the entire systems. We proposed a
method by which check-points can be obtained in-
ductively for specifications in model checking. Users
must generally know well temporal specification be-
cause the specification might be complex. Our pro-
posed method can gain temporal formula specifica-
tions inductively. We aimed at input-output order rela-
tions for systems, not considering output-input order
relations. Furthermore, we defined strong/weak tem-
poral order relations in the procedure of specification.
Weak temporal order relations include orders of inputs
implicitly. Strong temporal order relations express in-
verse input-output order relations. We showed that the
verification tasks are reduced for states, transitions,
and memory with our proposed inductive specifica-
tion method. System designers can easily lead com-
plex temporal formulas by using the method. In veri-
fication results, especially, required memory was able
to reduced for formal verification. Then, it is assumed
to be research work in the future to verify more large
scale systems.
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