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Abstract: The paper is concerned with the numerical solution of the quasi-variational inequality
modelling a contact problem with Coulomb friction. After discretization of the problem by
mixed finite elements and with Lagrangian formulation of the problem by choosing appropriate
multipliers, the duality approach is improved by splitting the normal and tangential stresses.
The novelty of our approach in the present paper consists in the splitting of the normal stress and
tangential stress, which leads to a better convergence of the solution, due to a better conditioned
stiffness matrix. This better conditioned matrix is based on the fact that the obtained diagonal
blocks matrices, contain coefficients of the same size order. For the saddle point formulation
of the problem, using static condensation, we obtain a quadratic programming problem. Key

words: Contact problem with Coulomb friction, dual mixed formulation, mixed finite element,
saddle point problem, quadratic programming, Schur complement.

CLASSICAL AND VARIATIONAL

FORMULATION

Let Ω ⊂ R
d, d = 2 or 3, the domain occu-

pied by a linear elastic body with a Lipschitz
boundary Γ. Let Γ1, Γ2 and ΓC be three open
disjoint parts of Γ such that Γ = Γ1 ∪ Γ2 ∪ ΓC ,
Γ1 ∩ ΓC = ∅ and mes (Γ1) > 0. We assume
that the body is subjected to volume forces
of density fff ∈ (L2(Ω))d, to surface traction
of density hhh ∈ (L2(Γ2))

d and is held fixed on
Γ1. The ΓC denotes a contact part of bound-
ary where unilateral contact and Coulomb
friction condition between Ω and perfectly
rigid foundation are considered. We denote
by uuu = (u1, . . . , ud) the displacement field,

εεε = (εij(u)) =

(

1

2
(ui,j + uj,i)

)

the strain

tensor and σσσ = (σij(u)) = (aijklεkl(u)) the
stress tensor with the usual summation con-
vention, where i, j, k, l = 1, . . . , d. For the

normal and tangential components of the dis-
placement vector and stress vector, we use the
following notation: uN = ui·ni, uuuT = uuu−uuuN ·n,
σσσN = σσσijuinj , (σσσT )i = σσσijnj − σσσN · ni, where
n = (ni) is the outward unit normal vector to
Γ.

We denote by g ∈ C(Γ̄C), g ≥ 0 the initial
gap between the body and the rigid founda-
tion and lets us denote by fff and hhh the density
of body and traction forces, respectively. We
assume that aijkl ∈ L∞(Ω), l ≤ i, j, k, l ≤ d,
with usual condition of symmetry and elastic-
ity, that is

aijkl = ajikl = aklij , 1 ≤ i, j, k, l ≤ d,

and ∃ m0 > 0, ∀ ξ = (ξij) ∈ R
d2

,

ξij = ξji, 1 ≤ i, j ≤ d, aijkl ξij ξkl ≥ m0|ξ|
2 .

In this conditions, the fourth-order ten-
sor aaa = (aijkl) is invertible a.e., on Ω and if
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we denote its inverse by bbb = (bijkl), we have
εεεij(uuu)) = (bijklσkl(uuu)), i, j, k, l = 1, . . . , d.

The classical contact problem with dry fric-
tion in elasticity, in the particular case, is with
the normal stress σN (u) and ΓC is assumed
known and considered as obeying the normal
compliance law, is the following

Find uuu = uuu(x, t) such that uuu(0, ·) = uuu0(·) in
Ω and for all t ∈ [0, T ],

−divσ(u)σ(u)σ(u) = fff, in Ω (1)

σσσij(uuu) = aijkl · εkl(uuu), in Ω (2)

uuu = 0 on Γ1 (3)

σσσ ·nnn = hhh on Γ2, (4)

the contact condition:

uN ≤ g, σσσN (u) ≤ 0, (uN−g)σσσN (u) = 0 on ΓC

(5)
and Coulomb friction on ΓC :

‖σT (u)‖ ≤ µF |σN (u)|, such that : (6)

− if ‖σT (u)‖ < µF |σN (u)| ⇒ uT = 0

− if ‖σT (u)‖ = µF |σN (u)| ⇒ ∃α ≥ 0,

such that u̇T = −ασT where uuu0 denotes the ini-
tial displacement of the body. Supposing that
a positive coefficient µF ∈ L∞(ΓC), µF ≥ µ0

a.e. on ΓC of Coulomb friction is given, we
introduce the space of virtual displacements

V =
{

v ∈ (H1(Ω))2|v = 0 on Γ1

}

and its convex subset of kinematically admissi-

ble displacements

K = {vN ∈ V |vN ≡ v · n ≤ g on ΓC}.

We assume that the normal force on ΓC

is known (as normal compliance) so that one
can evaluate the non-negative slip bound p ∈
L∞(ΓC) as a product of the friction coefficient
and the normal stress, i.e. p = µF λ1, when λ1

is the normal stress. We assume that normal
interface response (the normal compliance law)
is:

σN (u) = −cN (uN − g)mN

where cN and mN are material constant de-
pending on interface properties.

(P1) Find u ∈ K such that J(u) =
min
v∈K

J(v).

The minimized functional representing the
total potential energy of the body has the form:

J(v) =
1

2
a(v, v) − L(v) + j(v)

where: the bilinear form a is given by

a(v, w) =

∫

Ω
aijklεij(v)εkl(w)dx

linear functional L is given by:

L(v) =

∫

Ω
fvdx +

∫

Γ2

hvds;

the sublinear functional j is given by:

j(v) =

∫

ΓC

p |vT | ds +

∫

ΓC

cN (u − g)mnvNds

where vT ∈ (L∞(ΓC))2 denotes the tangent
vector to boundary Γ. It is known that the
problem (P1) is non-differentiable due to the
sublinear term j, and has a unique solution [9].

The variational formulation, in the quasi-
static case, is equivalent to the quasi-
variational inequality:
(P2) Find u(x, t) ∈ K×[0, T ] s. t. a(u, v−u̇)+
j(v−u̇) ≥ (L, u− v̇) ∀v ∈ K, ∀t ∈ [0, T ], T > 0,
with initial conditions u(x, 0) = u0, u̇(x, 0) =
u1.

The existence and uniqueness of the so-
lution of this quasi-variational inequality are
proven under the assumption that µF is suffi-
ciently small and mes(Γ0) > 0 [16].

The Lagrangian formulation of the problem
(P1) is given by introducing

L : V × Λ1 × Λ2 → R, with

L(v, µ1, µ2) =
1

2
a(v, v) − L(v)+

+ 〈µ1, vN − g〉

∫

ΓC

µ2vT ds

where Λ1 = {µ1 ∈ H−
1

2 (ΓC)|µ1 ≥ 0} , Λ2 =
{µ2 ∈ L∞(ΓC)| |µ2| ≤ p on ΓC}.

The space H−
1

2 (ΓC) is the dual of

H
1

2 (ΓC) =

= {γ ∈ L2(ΓC)| ∃v ∈ V s.t. γ = vN on ΓC}
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and the ordering µ1 ≥ 0 means, in the varia-
tional form, that 〈µ1, vN − g〉 ≤ 0, ∀ v ∈ K,
where 〈·, ·〉 denotes the duality pairing between

H−
1

2 (ΓC) and H
1

2 (ΓC). Since L2(ΓC) is dense

in H−
1

2 (ΓC), the duality pairing 〈·, ·〉 is repre-
sented by a scalar product in L2(ΓC).

The Lagrange multipliers µ1, µ2 are con-
sidered as functionals on the contact part of
the boundary Γ. It is important that the La-
grange multipliers do have mechanical signif-
icance: while the first one is related to the
non-penetration conditions and represents the
normal stress, the second one removes the non-
differentiability of the sublinear functional

j2(v) = sup
µ2∈Λ2

∫

ΓC

µ2vT ds

and represents the tangential stress.

The equivalence between the problem (P1)
and the lagrangian formulation is given by:

inf
v∈K

J(v) = inf
v∈V

sup
µ1∈Λ1,µ2∈Λ2

L(v, µ1, µ2).

By the mixed variational formulation of the
problem (P1) we mean a saddle point problem:

(P3)find (w, λ1, λ2) ∈ V × Λ1 × Λ2 such that

L(w, µ1, µ2) ≤ L(w, λ1, λ2) ≤ L(v, λ1, λ2),

∀ (v, µ1, µ2) ∈ V × Λ1 × Λ2.

It is known that (P3) has a unique solution
[2] and its first component w = u ∈ K solves
(P1) and the Lagrange multipliers λ1, λ2 rep-
resent the normal and tangential contact stress
on the contact part of the boundary, respec-
tively.

Remarks.

10. For the contact problem with Coulomb
friction, we use the formula p ≡ µF λ1, for the
slip bound on the contact boundary ΓC , where
λ1 ≡ λ1(p) is the normal stress on ΓC and µF

is the coefficient of friction. Unfortunately this
problem cannot be solved as a convex quadratic
programming problem because p is an a priori
parameter in (P3), while λ1 is an a posteriori
one.

20. Because we can consider the mapping
Ψ : Λ1 → Λ1, Ψ : p → λ1 ≡ λ1(p) defined by
the second component of the solution for the
contact problem with given friction (P3), the
solution of the contact problem with Coulomb
friction will be defined as a fixed point of this
mapping in Λ1. Results concerning the exis-
tence of fixed points for sufficiently small fric-
tion coefficients may be found in [17].

THE TIME DISCRETIZATION AND

FINITE ELEMENT APPROXIMA-

TIONS OF THE CONTACT PROB-

LEMS WITH COULOMB FRICTION

Let us consider a partition (t0, t1, . . . , tN ) of
time interval [0, T ] and also the incremental for-
mulation obtained by using the backward finite
difference approximation of the time derivative
of u.

If we use uk
h = uh(x, tk), ∆uk

h = uk+1
h − uk

h,
∆tk = tk+1 − tk, u̇h(tk+1) = ∆uk

h/∆t, fk
h =

fh(k∆t), for k = 0, 1, . . . , N−1 where ∆t =
T

N
,

we obtain, at each time tk, the following quasi-
variational inequality

find ∆uk
h ∈ Vh s.t. (7)

a(∆uk
h, vh − ∆uk

h) + j(uk
h + ∆uk

h, vh − ∆uk
h) ≥

≥ ∆Lk(vh − ∆uk
h) − F (uk

h, vh − ∆uk
h),

∀ vh ∈ Kh, where F (uk
h, vh−∆uk

h) = a(uk
h, vh−

∆uk
h) − Lk(vh − ∆uk

h).

The time discretization of the problem (P2)
follows. For a given load history the quasi-
static problem is approximated by a sequence
of incremental problems (7); although every
problem (7) is a static one, it requires appropri-
ate updating of the displacements, so loads for
each increment and so we obtain the following
sequence:

(Pht
2 ) Find u ∈ Kh, for each time tk

such that J(u) = min
v∈Kh

J(v),

where u ≡ ∆uk
h, v ≡ vh, J(vvv) = 1

2vvv
TKvKvKv −

vvvTfff + pppT |TvTvTv| and Kh = {vvv ∈ R
n|NvNvNv ≤ ggg}.

Here, we by denote KKK ∈ R
n×n the positive def-

inite stiffness matrix, fff ∈ R
n is the load vector,
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ppp ∈ R
m is the nodal slip bounds vector for con-

tact nodes. The matrices N, TN, TN, T ∈ R
m×n contain

the rows of the normal and tangential vectors
in the contact nodes, respectively, and ggg ∈ R

m

is the vector of distances between the contact
nodes and the rigid foundation.

The matrix form of the Lagrangian for the
problem (Pht

2 ), at each time tk is:

L(vvv,µµµ1,µµµ2)=
1

2
vvvTKKKv−fffTv+µµµT

2 TvTvTv+µµµT
1 (NvNvNv−g)

where µµµ1 ∈ Λ1, µµµ2 ∈ ΛΛΛ2 are the Lagrange
multipliers and ΛΛΛ1 = {µµµ1 ∈ R

m|µµµ1 ≥ 000},
ΛΛΛ2 = {µµµ2 ∈ R

m||µµµ2| ≤ ppp}.
The algebraic mixed formulation of (Pht

2 ) is:
Find (vvv,µµµ1,µµµ2) ∈ R

n ×ΛΛΛ1 ×ΛΛΛ2 such that

KKKuuu = fff −NNNTλλλ1 − TTT Tλλλ2 (8)

(NNNuuu−ggg)T (λλλ1−µµµ1)+uuuTTTT T (λλλ2−µµµ2) ≥ 0, (9)

(µµµ1,µµµ2) ∈ ΛΛΛ1 ×ΛΛΛ2.

After computing u from (8) and substitut-
ing u into (9), we obtain the algebraic dual for-

mulation, for each time tk, i.e.,

min

{

1

2
λλλTAAAλλλ − λλλTBBB

}

s.t. (10)

λλλ1 ≥ 0, |λλλ1| ≤ ggg, λλλ = (λλλT
1 ,λλλT

2 )T ,

where

AAA =

(

NNNKKK−1NNNT NNNKKK−1TTT T

TTTKKK−1NNNT TTTKKK−1TTT T

)

and

BBB =

(

NNNKKK−1fff − ggg
TTTKKK−1fff

)

.

The problem (10) is a quadratic program-

ming problem that can be solved by several
efficient algorithms.

ALGORITHM FOR SOLVING THE

ALGEBRAIC DUAL FORMULATION

It is known that the matrix A is ill condi-
tioned, and its diagonal blocks corresponding
to the normal and tangential stress are closely
related to the dual Schur complement whose
spectrum is not so ill conditioned.

The performance of duality algorithms may
be improved if we split the normal and tangen-
tial stress. To exploit this fact, let us introduce
a new notation for the natural block structure
of the dual Hessian A and for the matrices B,
corresponding to normal stress, and λλλN , corre-
sponding to tangential stress λλλT :

AAA =

(

AAA11 AAA12

AAA21 AAA22

)

, BBB =

(

BBB1

BBB2

)

, λλλ =

(

λλλ1

λλλ2

)

.

The Gauss-Seidel algorithm for problem
(10), leads to a sequence of approximations of

λλλ
(i)
NNN

and λλλ
(0)
TTT

as follows:

Initialize λλλ
(0)
NNN

:= ggg(0); λλλ
(0)
TTT

:= 0; iii := 0;
ttt0 := 0;

repeat

iii := iii + 1, tttk+1 = ∆tk+1 + tk;

λ
(iii)
TTT

:= (DDD − LLL)−1 · (UUU · λ
(iii−1)
TTT

+ BBB2)

such that |λTTT | ≤ µF · λ
(iii−1)
NNN

;

λ
(iii)
NNN

:= AAA−1
11 · (BBB1 −AAA12 · λ

(iii)
TTT

) such that
λNNN ≥ 0
until |λλλ(i) − λλλ(i−1)| ≤ Tol, and tk+1 ≤ T ;
where Tol is the chosen tolerance, the matri-
ces DDD, −LLL and −UUU representing the diago-
nal, strictly lower triangular and strictly up-
per triangular parts of SSS, respectively, with
SSS = AAA21AAA

−1
11 AAA12 − AAA22 being the Schur com-

plement of the matrix AAA.
Conclusions. The novelty of our approach

in the present paper consists in the splitting,
within the known algorithm, of the normal
stress and tangential stress, which leads to a
better convergence of the solution, due to a
better conditioned stiffness matrix. This better
conditioned matrix is got due to the fact that
the obtained diagonal blocks matrices, contain
coefficients of the same size order.
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problem, Bul. Ştiinţ. Univ. Baia Mare, Ser.
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