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Abstract: - Classification of image (both 2D and 3D) and noisy data using eigenvalues of tensor as features is 
found to be simple, but effective method for reducing noise. The features constitute a systematic structure that 
can be segmented one from another.  We propose the segmentation of class clustering by fuzzy c-mean 
algorithm which can be applied to classify image and noisy data; thus, unnecessary data from the systems can 
be removed. 
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1   Introduction 
When collecting 2D or 3D data using tools like 
sensors or scanners [1], [2], there usually is 
unnecessary data found, called “noise” – which 
takes computer memory and reduces the quality and 
clarity of the images. There are various approaches 
in Image Processing aiming to remove noise, reduce 
data and preserve the shape and fine details, 
including: Applying edge-preserving filtering on 
scanned points [1]; Applying Fuzzy c-mean 
algorithm to search for clusters that can be described 
by circular arcs [3]; or Using Tensor Voting for the 
robust inference of features from noisy data 
[4],[5],[6],[7]. And from the [4] studies, we find the 
interesting distinction of image data and noisy data 
from tensor. 
     Tensor shows relation between data using 
eigenvectors and eigenvalues.  The [4] uses various 
tensor voting fields to obtain saliency features. 
Different shape description data contains different 
eigenvalues, also noisy data contains different 
eigenvalues, and therefore, we can use eigenvalues 
as feature to separate noisy data from image data. 
     The fuzzy c-means (FCM) clustering algorithm 
defined by Dunn [10] and generated by Bezdek [11] 
is the best-known and most powerful method in 
cluster analysis. We use FCM to separate data sets 
into 2 groups: image data and noisy data. 
     The remaining of this paper will discuss in details 
as follows: Section 2 Feature capturing from Tensor; 
Section 3 Fuzzy c-means clustering; Section 4 
Experimental result, and the final section is 
conclusion and future work. 

2   Feature capturing from Tensor  
3D local image features are encoded into a tensor 
field ( )3

3:F TΩ→ R , where  is the image domain, 

and 

Ω

( )3
3T R  denotes the set of symmetric positive 

semidefinite tensor on . 3R
     Let ( )3

3A T∈ R , then A  is a symmetric positive 

semidefinite 3x3 matrix, representing tensor. We 
can decompose such matrix into its eigenvectors and 
eigenvalues 
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where 1λ  , 2λ and 3λ  are  nonnegative eigenvalues    
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Fig.1 Graphical representation of symmetric positive 
semidefinite tensor on  3R
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For 2D data, tensor can be described in the same 
way [8] 
     In this paper, we search for features in arbitrary 
3D images that show relation of local points by 
     Let ix  arbitrary point using to create tensor 
matrix. Let iB  a set of local points surrounding ix  
which can be written as 
 
      { } , 1,2,.......,i iB x x x r i= ∈Ω − ≤ = N    (2) 
 
when Ω  is a set of whole data  
          is number of all data in  N Ω
          r    is radius constant 
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iA   is tensor matrix shown feature of ix  

 
Fig.2 Eigenvectors and eigenvalues of point in 3 
dimensional data. 
 
    Figure 2  illustrates eigenvectors with largest 
eigenvalues capture the most variation (  and 
eigenvectors with smallest eigenvalues has the least 
variation (  among all of vector 

)1e

)3e ( )ix x−  
     One factor affecting eigenvalues of  matrix is a 

norm of vector (
iA

)ix x− , which sometime affects the 
segmentation and lead to error clustering. To solve 

this problem, we normalize vector ( i )x x− , then 

equation (3) can be re-written as follows: 
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Feature capturing algorithm: 
1. Initialize  r  to create iB  as shown in equation (2) 
2. Calculate  matrix from equation (4) iA
3. Calculate eigenvalues of   matrix to use as   iA
    features in clustering 
 
 
3   Fuzzy c-means clustering  
Fuzzy c-means clustering is the method for 
partitioning data that has an objective function  
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where    m is real number greater than 1, 

iju is degree of membership of ix  in the  
     cluster j 

ix  is any point 

jc  is center of cluster j  
 

     This method used iteration for optimized an 
objective function by update  and  iju jc  from below 
 
                        

2
1

1

1
ij

mC
i j

i kk

u
x c
x c

−

=

=
⎛ ⎞−
⎜ ⎟
⎜ ⎟−⎝ ⎠

∑

                       (6) 

 

where             1

1

N
m
ij i

i
j N

m
ij

i

u x
c

u

=

=

⋅
=
∑

∑
                                  (7) 

 
Iteration will stop when 
 
                       { }1max + − <k k

ij ij iju u ε                        (8) 

 
where ε  is the termination criterion and  are 
iteration step. 

k
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The algorithm is the following step: 
1. Initialize   where 0U ijU u⎡ ⎤= ⎣ ⎦  matrix 

2. Calculating center in iteration  thk k
ijC c⎡ ⎤= ⎣ ⎦

3. Update  to be   kU 1kU +

4. Return iteration until the condition  
     { }1max k k

ij ij iju u ε+ − <   is true. 

 
4   Experimental Results 
In this research, we propose noised reduction from 
data sets by capturing features from tensor, then 
using FCM to classify them into 2 clusters: image 
data and noisy data. We can summarize the 
approach as Fig. 3 
 
 
 
 
 
 
 
 
Fig.3 Complete block-diagram of the proposed 
noised reducing algorithm 
 
     For this experiment, we test with the synthetic 
2D ellipse, 3D plane, cylinder, sphere and 
hyperboloid; then add random noisy data at 50%, 
100% and 200% of the image data. 
     The 2D ellipse has been generated between 100 
and 200 feature points, 3D plane and hyperboloid 
generated between 1,000 and 2,100 points, while 
cylinder generated between 3,000 and 6,000 points, 
and sphere generated between 15,000 and 31,000 
points. 
     From these 3D surface sampled data sets -- after 
calculating eigenvalues to capture features and FCM 
clustering, the corresponding result is depicted in 
Fig.4 

 
 
Fig.4 FCM Clustering using eigenvalues 
 

     Fig.5 (a) illustrates the samples of 2D and 3D 
images with noisy data, comparing with Fig.5 (b) 
which illustrates the sampled output after noised 
reducing algorithm. 
     Table 1 demonstrates percentages of irremovable 
noisy data and percentages of lost image data after 
clustering algorithm. From Table 1, it can be seen 
clearly that data size does not affect the efficiency of 
the clustering algorithm; but what affects it is the 
proportion of noisy data comparing to image data. If 
the data sets have low percentages of noise, the 
algorithm could remove most of noisy data from the 
sampled images. However, some feature points of 
the images also get lost. In contradiction, the higher 
percentages of noise in the date sets are, the higher 
percentages of irremovable noise remain, but the 
percentages of lost image data also decrease. 
 

Input 
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Tensor Transformation 

Feature Capture 
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                 (a)                                      (b) 
 
Fig.5 Example data before and after noise reducing 
Algorithm 
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     The irremovable noisy data and lost image data 
are normally found near the edges of images. The 
principal reason is that eigenvalues of noisy data and 
edging data is almost equivalent. 
 
Table 1: Percentages of irremovable noisy data and 
percentages of lost image data after clustering 
algorithm 
 

SHAPE DATA 
SIZE % NOISE  

% 
IRREMOVAB

LE  NOISE  

% LOST 
DATA 

2D ellipse 98 50% 3.08 0.00 
 130 100% 23.08 0.00 
 195 200% 38.46 0.00 

3D plane 1014 50% 0.00 18.93 
 1352 100% 0.30 15.38 
 2028 200% 2.07 2.07 

3D cylinder 3000 50% 2.05 0.00 
 4000 100% 4.00 0.00 
 6000 200% 8.35 0.00 

3D hyperboloid 1014 50% 0.30 17.60 
 1352 100% 1.33 15.53 
 2028 200% 3.85 1.78 

3D sphere 15396 50% 3.21 0.00 
 20528 100% 7.26 0.00 
 30792 200% 15.34 0.00 

 
 
5 Conclusion 
We propose the noisy data reduction by using 
Tensor’s eigenvalues and Fuzzy C-means 
Algorithm, the result shows that using eigenvalues 
as feature for clustering can give the effective 
output. We find the error of this algorithm to be 
losing data of images when percentages of noisy 
data in the set are low. In the other hand, when the 
percentages of noise in data sets have increased, the 
percentages of the error have decreased. 
     However, this research is studied and based on 
synthetic data, so we would experiment our future 
work with the real data. 
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