

WEB TRAFFIC SIMULATION WITH

SCALE-FREE NETWORK MODELS

RADU DOBRESCU, SEBASTIAN TARALUNGA, STEFAN MOCANU

"Politehnica" University of Bucharest, Faculty of Control and Computers,
313 Spl. Independenţei, Bucharest

ROMANIA

radud@isis.pub.ro

Abstract. The paper proposes a scale-free model of an Internet and we want to see whether simulation of large-

size scale-free networks is possible and if there are limitations in single-CPU simulation. We later simulate the
same model using a distributed environment by dividing the task of running the simulation on a number of
CPU's running in parallel in a cluster and note the differences in simulation time as well as some

characteristics related to the efficiency of the simulation distribution.

Keywords: scale-free networks, simulation, parallel and distributed processing.

1 Introduction
To model a distributed network environment like
the Internet, it is necessary to integrate data
collected from multiple points in a network in order
to get a complete picture of network-wide view of

the traffic. Knowledge of dynamic characteristics is
essential to network management (e.g., detection of
failures/congestion, provisioning, and traffic

engineering like QoS routing or server selections).
However, because of a huge scale and access

rights, it is expensive (sometime impossible) to
measure such characteristics directly. To solve this,
methods and tools for inferencing of unobservable
network performance characteristics are used in
large scale networking environment. A model
where inference based on self similarity and fractal
behavior can be applied is the scale free network.

Scale-free networks are complex networks in
which some nodes are very well connected while
most nodes have a very small number of

connections. An important characteristic of scale-
free networks is that they are size independent, that

is they preserve the same characteristics regardless
of the network size N. Scale-free networks have a
degree distribution that follows a power

relationship, P(k) = k^(-λ), where the coefficient γ
may vary approximately from 2 to 3 for most real
networks. Many real networks have a scale-free
degree distribution, including the Internet.
Simulation of scale-free networks is necessary in
order to study their characteristics like fault-
tolerance and resistance to random attacks.

However, large-scale networks are difficult to

simulate due to the hefty requirements imposed on
CPU and memory. Thus a distributed approach to
simulation can be useful particularly for large-scale
network simulations, where a single-processor is

not enough.

2 Scale-free topology
In order to simulate an Internet-like network we
used an algorithm based on the concept of

“preferential attachment”. This means that a new
node will more probably attach to those nodes that
are already very well connected, i.e. they have a
large number of connections with other nodes from
the network. Poor connected nodes, on the other
hand, have smaller chances of getting new
connections (see fig.1).

Fig. 1. Graphic representation of the generated

network for 200 network nodes and λ=2.35

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 275

Besides following the repartition law mentioned
above, some other restrictions (for example those
related to cycles and long chains) had to be applied
in order to make the generated model more realistic

and similar to the Internet. Another obvious
restriction is the lack of isolated components (see
fig.2).

Fig. 2. Graphic representation of the generated

network for 200 network nodes and λ=2.85

A more subtle restriction is related to the TTL
(Time-to-living) which is a way to avoid routing
loops in a real Internet. This translates in a
restriction for our topology – there can be no more

that 30 nodes to get from any node to any other
node. Another subtle restriction is that the
generated network will also have redundant paths,

multiple possible routes between nodes. In other
words, the Internet model topology should not
"look" like a tree, but should rather have numerous
cycles.
The algorithm used for the generation of the scale-
free network topology is generating networks with
a cyclical degree that can be controlled, in our case,

approximately 4% of the added nodes form a cycle.
One more restriction is that we try to avoid long-
line type of scale-free networks – a succession of

several interconnected nodes – structure that does
not have a real-life Internet equivalent, so our

algorithm makes sure such a model is not
generated.

3 Proposed Internet model
The generated topology consists of three types of
nodes: Routers, defined as nodes with one or
several links. Routers do not initiate traffic and do
not accept connections. Routers can be one of the
following types: routers that connect primarily
customers, routers that connect primarily servers

and routers that connect primarily other routers.

Routers that connect primarily customers have
hundreds or thousands of type one connections
(leaf nodes) and a reduced number of connections
to other routers.

Routers that connect primarily servers have a
reduced number of connections to servers in the
order of tenths and reduced number (2 or 3)

connections to other routers. Routers that connect
primarily routers have a number in the order of

tenths of connections to other routers and do not
have connections to neither servers nor customers.
Servers are defined as nodes with one connection
but sometimes could have two or even three
connections. Servers only accept traffic
connections but do not initiate traffic.
Customers (end-users) defined as nodes that have

only one connection, very seldom two connections.
Customers initiate traffic connections towards
servers at random moments but usually in a time

succession. For our proposed model, we chose a
20:80 customers to servers ratio.

3.1 Scale-free network design algorithm
We designed and implemented an algorithm that
generates those subsets of the scale-free networks
that are close to a real computer network such as

the Internet. Our application is able to handle very
large collections of nodes, to control the generation
of network cycles, and the number of isolated

nodes. The application was written in Python
being, as such, portable. It runs very fast on a

decent machine (less than 5 minutes for 100.000
nodes model).

Network generation algorithm:

1. set node_count and λ
2. compute the optimal number of nodes per degree
3. create manually a small network of 3 nodes
4. for each node from 4 to node_count
 4.1. call add_node procedure

 4.2. while adding was not successful
 4.2.1. call recompute procedure
 4.2.2. call add_node procedure
5. save network description file

add_node procedure

1. according to the preferential attachment,

compute the degree of the parent node
2. if degree could be chosen then exit procedure
3. compute the number of links that the new node

shall establish with descendants of its future parent,
according to copy model

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 276

4. chose randomly a parent from the nodes having
the degree as computed above
5. compute the descendant_list, the list of
descendants of the newly chosen parent

6. create the new node and links
7. for each descendant of the descendant_list
 7.1. create the corresponding links

8. exit procedure with success code

recompute procedure

1. for each degree category
 1.1. calculate the factor needed to increase
the optimal count of nodes per degree
 1.2. if necessary increase the optimal
number of nodes per degree
2. exit procedure

The algorithm starts with a manually created
network of several nodes, then using preferential

attachment and growth algorithms, new nodes are
added. We introduced an original component, the
computation in advance of the number of nodes on
each degree-level. The preferential attachment rule
is followed by obeying to the restriction of having
the optimal number of nodes per degree.
We noticed that the power law is difficult to follow

while the network size is growing, as a result we
calculate again the optimal number of nodes per
degree-level at given points in the algorithm. This

is necessary because the bigger the network the
higher the chance that a new node will be attached

only to some specific very-connected nodes. In a
real network, such as the Internet this will not
happen.

If only the preferential and growth algorithms are
followed, then the graph will have no cycles, which
is not realistic, therefore we introduced a
component from the “copy model” for graph
generation in order to make the network graph
include cyclical components.
This component ensures that each new node is also

attached to some of its parent-node descendants
using a calibration method. The calibration method

computes the number of additional links that a new
node must have with the descendants of its parent.
This number depends on how well-connected is the

parent and it also includes a random component.
The output of the application is a network
description file that can be used by several tools
like for instance a tool to display the power law.
This file is stored using a special format needed in
order to reduce the amount of disk writes.

Fig. 3. Graphic representation of the distribution

law for a scale-free network model and for a

randomized network with 10000 nodes

In Fig. 3 we compare an almost random network
distribution law and a free-scale distribution law.
On the Y axis we represent the number of
connections and on the X axis the number of nodes
having this number of connections. It was
impossible to obtain an completely random
network given the limitations imposed by the

Internet model. In this paper we further describe
only the scale-free network model since we think
that such a model can lead to a better balancing

based on the preferential attachment mechanism.

3.2 Traffic generation
Traffic generation is an essential part of the
simulation as such, we decided to initiate randomly
between 1 and 3 simultaneous traffic connections
from “customer” nodes and for the sake of
simplicity we used ftp sessions to randomly chosen

destination servers. We also decided that the links
connecting routers should have higher speeds than
lines connecting customers to routers, for example

- server-router 1 Gbps, client-router 10 Mbps,
router-router 10, 100 Mbps or 1Gbps depending on

the type of router. The code generated respecting
these two conditions is added to the network
description file, being ready to be processed by the

simulator.

3.3 Single-CPU simulation
We used a modular approach that allows us to later
reuse components for different parts of the

simulation. For example, the same network model
generated by the initial script can be used for both
single-CPU and distributed simulations, allowing a

comparison between the two types of simulation.

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 277

Standalone simulations were run under University
of California Berkeley's NS2 network simulator.
NS2 (The Network Simulator) is a very complex
open source discrete event simulator targeted at

networking research [1]. The simulator is actually
an OTcl interpreter, which also makes it quite easy
to use.

We noticed that on a single machine, as network
size increases, very soon we hit the limit of the

network sizes that can be simulated due to
resources limitations mostly memory but also high
CPU load. In case of small size network models,
such as with a few nodes, simulations can be run
on a single machine. One of the models generated
with a number of 10000 nodes and a lot of traffic
connections could not be simulated on an AMD

Athlon(tm) 64 Processor 3200+ with only 512
Megabytes of RAM available.

The results provided by NS2 were visualised using
the nam (network animator) software package. The
topology generator gives different colours to
different type of nodes: server, client, router.
Details about the networking traffic through each
network node are parsed from the simulator output.

3.4 Multi-CPU simulations
Unfortunately NS was not designed to run on
parallel machines. Only in the NS version 3, now
under alpha development, there are discussions

about distributed processing. The main obstacle in
running ns in a distributed/parallel environment is

related to the description of objects in the
simulation.
As such we ran our distributed simulations under

Georgia Tech's extension to NS2, pdns [2], which
uses a syntax close to that of NS2, the main
differences being a number of extensions needed
for the parallelization so that different instances of
pdns can communicate with each other and create
the global image of the network to be simulated.
Each simulator running on different nodes needs to

know the status of other simulators. Furthermore, if
we try to split the network description file into
separate files and run each of these in separate
simulation contexts, we need to find a way to
communicate parameters between the simulation
nodes.
The simulation process consists of a number of

steps, of which, defining network nodes links,
queue and topology must take into consideration
the fact that other nodes may not reside under the

same simulator. All simulations are running 40
seconds of simulated traffic scenarios.

3.5 Cluster description
In order to create a parallel/distributed environment
we have built a cluster using commodity hardware
and running Linux as operating system [3]. The
cluster can run applications using a parallelization

environment.
We have written and tested applications using
PVM (Parallel Virtual Machine) which is a

framework consisting of a number of software
packages that accomplish the task of creating a
single machine that spans across multiple CPU's,
by using the network inter-connection and a
specific library [4]. Applications must be compiled
using this specific library in order to permit
communication. Another framework that can be

used to run applications in a distributed manner is
MPI (Message Passing Interface). MPI specifies a

library for communication between tasks.
Our cluster consists of a “head” machine and a
number of six cluster nodes. The “head” provides

all services for the cluster nodes – IP allocation,
booting services, File System (NFS) for storage of
data, facilities for updating, managing and
controlling the images used by the cluster nodes as
well as access to the cluster. The “head” computer
provides an image for the operating system that is
loaded by each of the cluster nodes since the

cluster nodes do not have their own storage media.
As this image resides in the memory of each cluster
node, we took special steps to reduce the size of

this image and to make most of the memory
available to the running processes. We were able to

reduce this image to 16 megabytes by moving
different parts of a running Debian Linux system
over network file systems, leaving on the image

only those components needed for booting and
controlling the cluster nodes.
The application partition is mounted read-only
while the partition where data is stored is mounted
read-write and accessible to the users on all
machines in a similar manner providing transparent
access to user data. In order to access the cluster,

users must connect to a virtual server located on a
head machine. This virtual server can also act as a
node in the cluster when extra computation power
is needed.

3.6 Network Splitting
In order to use PDNS simulation, we needed to
split the network into several quasi-independent

sub-networks [5]. Each instance of PDNS handles a
specific sub-network, thus the dependencies
between them need to be minimal, i.e. there shall

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 278

be as few as possible links between nodes located
in different sub-networks.

We chose to have a federated simulation approach.

We designed and implemented a federalization
algorithm in order to split the original generated
network into several small ones. The algorithm that

generates n federative components chooses the
most n linked nodes, assigned them to an empty

federation and starts a procedure similar to the
breadth-first search algorithm. Each node is
marked as being owned by a federation.

The pdns script generator takes as input the
generated network description and the generated
federations, respectively. Depending on the

connectivity of nodes, they are assigned the role of
routers, servers, end-users and corresponding
traffic scenario are associated with them.

We also used a different approach to partitioning a
ns script into several pdns scripts by using autopart
[6], a simulation partitioning tool developed by
Donghua Xu from Georgia Institute of Technology.
This tool is based on the graph partitioning package
called METIS [7]

Autopart takes an NS2 script and creates a number
of pdns scripts that are ready to run in parallel on a
number of machines, attempting to make the best

trade-off between look-ahead, load balancing and
communication overhead in the partitioning

process, resulting in the best performance when
being run by PDNS.

4 Simulation results
We have decided to run simulations for 40 seconds
of traffic for a scale-free network model with
10000 nodes. At such a scale, a one-node

processing is impossible because the cluster node
runs out of memory. Still, to get valid results we
had run the simulation on a much more powerful

machine with plenty of memory and virtual
memory.

We chose two different scenarios, one with a
moderate network traffic and another scenario with
a heavy network traffic. Each scenario was
simulated five times under similar load conditions,
using two to six CPU's and we noted the time used
for the actual simulation (in seconds).

Table 1. Scale-free network model with 10000
nodes and moderate network traffic (40 seconds)

Table 2 Scale-free network model with 10000
nodes and heavy network traffic (40 seconds)

For the first scenario we noted that there is a point
where adding more nodes in the simulation does
not help but rather increases the simulation time. In
this scenario, the optimum number of nodes is 5.
The second scenario requires much more resources

as can be seen from the single-processor simulation
which again failed on the cluster nodes but was
successful on a more powerful machine, although it

takes a longer time. Also in this simulation we see
that adding more nodes (in our case more than 4)
the simulation process is slower.
Another observation is that the 2-CPU simulation
is actually faster than the 3-CPU simulation,
although the optimal number of nodes is not 2.

5 Conclusion
Running pdns is more efficient than running NS2
especially on large size network models where

sometimes pdns is the only solution. However,
there are limitations in the number of cluster nodes
that could process a given network model since
more nodes are used, more traffic links between
different cluster nodes are to be simulated and
therefore more time is spent on inter-processor
communication.

It is very important to split the network model
correctly into smaller sub networks (federations)
since there is a trade-off between the degree of

separation and federation balancing - the more
separated the sub networks are, the more
unbalanced they become.

Number of c lu ster nodes used
1 2 3 4 5 6

Run 1 failed 319 338 135 173 165

Run 2 failed 343 357 140 176 171

Run 3 failed 347 351 134 177 166

Run 4 failed 316 347 139 177 165

Run 5 failed 308 320 138 178 163

Average 1139 326.6 342.6 137.2 176.2 166

Number of cluster nodes used
1 2 3 4 5 6

Run 1 failed 68 46 32 29 40

Run 2 failed 68 41 31 30 37

Run 3 failed 67 43 32 33 31

Run 4 failed 68 45 30 29 43

Run 5 failed 67 45 32 31 40

Aver age 135 67.6 44 31.4 30.4 38.2

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 279

We assume that the results observed in scenario
number two where the 2-CPU simulation is
actually faster than the 3-CPU simulation although
not being the optimal number of cluster nodes, is

related to the federalization algorithm which failed
to reach an optimal solution for the 3-CPU scenario
thus the processing times higher than 2-CPU.

Further work is necessary to confirm the results
observed, processing on more than six processors

and the study of other federalization algorithms.
We are currently developing a program that can be
used to study the efficiency of the parallel
processing and help us understand the interlocking
mechanisms and further help us improve the
efficiency of the simulation.

ACKNOWLEDGEMENTS

This work was partially supported by the
Romanian Ministry of Education and Research

under Grants No. 1467A/2005 and No. 1357/2005-
Postdoctoral.

References:
[1] J. Chung, NS by example, www.isi.edu/
[2] http://www.cc.gatech.edu/computing/ pdns/

[3] S. Mocanu and S. Taralunga, Cluster based
simulations of Scale-Free Networks
Immunization Strategies,, In: WSEAS

Transactions on Computers, Issue 2, vol. 6,
2007, p. 268

[4] A. Grama, A. Gupta, G. Karpys and V. Kumar,
Introduction to Parallel Computing, Prentice
Hall, 2003

[5] B. Wilkinson, and M.A Pearson, Parallel
Programming, Prentice Hall, 2005

[6] G. Riley, M. Ammar, R.Fujimoto, A. Park, K.
Perumalla and D. Xu, A Federated Approach to
Distributed Network Simulation, ACM Trans.

on Modeling and Computer Simulation
(TOMACS), Vol. 14(2), April 2004

[7] METIS - Serial Graph Partitioning and Fill-
reducing Matrix, glaros.dtc.umn.edu/

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 280

