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Abstract: - One of the crucial issues in contemporary evolutionary genetics is dating of the common ancestors of 
different species.  Applicability of several existing approaches based on coalescence theory is limited to deterministic 
population trajectories, known to be unrealistic. In the paper the computer simulation based approach is presented, 
which is capable to deal with different population history scenarios, including populations evolving  stochastically and 
with changing environment. This approach arises from comparison of O’Connell’s and Fisher-Wright models. It is 
applied to estimate the age of our most recent female common ancestor, called Mitochondrial Eve, based on the genetic 
material from mitochondrial DNA belonging to contemporary humans and Neanderthal fossils. Obtained results 
indicate that after changing the outgroup from chimpanzee to Neanderthals, the stochastic genetic models with different 
assumptions tend to give similar predictions, and therefore these predictions are much more reliable than they were 
before. 
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1   Introduction 
The results of analysis of genetic variation including 
such problems as heterozygosity, allele distribution, or 
linkage disequilibrium, are affected by population 
history. Therefore the estimation of the probable long-
term demographic history of a population has become 
one of the main problems in statistical genetics, and in 
the last decade a lot of research work has been focused 
on inferring human population history from genetic 
diversity data [1, 2]. The majority of methods were 
based on the Fisher-Wright (FW) model of genetic drift 
which assumes multinomial sampling between 
generations and thus asymptotically Poisson distribution 
of the number of progeny for any individual. Since this 
model is not always accurate, there exists a problem of 
the influence of the departure from FW model on the 
distribution of the coalescence time and further analysis 
of genetic variation.  
     The coalescent events, i.e. moments of finding in the 
genealogy the common ancestors of two individuals, are 
dependent on many demographical events having the 
stochastic nature. Therefore, to address this problem, we 
performed an extensive computer simulations, 
estimating the coalescence distribution for populations 
evolving according to various stochastic scenarios. The 
paper presents how to estimate the time to the most 
recent female common ancestor (MRFCA) of modern 
humans, called Mitochondrial Eve (mtEve), by 

comparison of coalescence time distributions in FW 
models and in the O’Connell (OC) model ([3] corrected 
in [4]). For this purpose we used the genetic data from 
hyper variable region I (HVRI) and hyper variable 
region II (HVRII) of mitochondrial DNA (mtDNA) of 
modern humans and Neanderthal fossils.  
     To draw conclusions, we simulated over 105 human 
population trajectories over time period of 104 

generations (it is equivalent to about 200,000 years, 
comparable to time elapsed from mtEve until present, if 
we assume the human generation length to be 
approximately 20 years) The estimates we obtain based 
on genetic data from HVRI and HVRII of mtDNA of 
modern humans and Neanderthal fossil [5] are very 
similar to those obtained with the use of phylogenetic 
trees. Similar estimates, based on conceptually different 
methods but applied to the very same underlying 
biological system which processes the information 
during genetic evolution, make these methods more 
reliable. The experimental confirmation of this fact is 
one of the relevant results of presented here computer 
simulation based study. 
 
 
2 Estimation of the expected time to 
coalescence  
This section presents briefly models for calculating the 
distributions of time to coalescence of a pair of alleles. 
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2.3.1   Deterministic Cases In FW models we use the Bobrowski coalescence 
distribution [6], whereas the analytical asymptotic 
coalescence distribution for population following a 
slightly-supercritical branching process is based on OC 
model [3]. Then we present results of simulations for 
different population scenarios and perform Kolmogorov-
Smirnow test for equality of distributions. We also give 
estimates of mtEve time, parameterized by genetic 
diversity data. Applying genetic data from HVRI and 
HVRII of mtDNA sequences belonging to H. sapiens 
and H. neanderthalensis is postponed until section 3..  

In the case of deterministic trajectory of the population 
we deal with FW models and consider special cases of 
the Bobrowski distribution (1). This distribution is 
presented for piecewise constant and for exponential 
growth population scenarios. 
 
Constant and piecewise constant population size 
The assumption about constant population size is 
unrealistic for a long term population trajectory, 
however a piecewise constant trajectory can approximate 
an arbitrary complex one. This approach was utilized in 
[2] for inference of the population scenario in ML-based, 
matrix coalescence method, and it may help to grasp the 
range of variation of the expected coalescent time E(Tc) 
for hypothetical population sizes Z. We have the 
following distribution of the time to coalescence of a 
pair of alleles: 

      
 
2.1 Fisher-Wright Model  
Let us consider the population of haploid individuals, 
say mtDNA sequences, which at time t ≥ 0 has the size 
Zt. Since FW model of genetic drift assumes the 
multinomial distribution of the number of offspring, two 
individuals at generation t + 1 are descendants of the 
single member of generation t with probability pt = 1/Zt 
and with probability qt = 1 – pt they are descendants of 
two different members. Thus the distribution of the time 
to coalescence of two randomly drawn alleles has the 
form [6]: 
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       (4) where T is the number of generations we consider and 

for the sake of mathematical consistency we put q-1 = 0 
and p-1 = 1. 
 

  
As Z → ∞, i.e. practically for Z > 103 and for T < Z, we 
have 

2.2 O’Connell’s Model 
For slightly supercritical time-homogenous Markov 
branching process with the expected number of offspring 
E(ξ0) = 1 +α/T + o(1/T) and variance Var(ξ0) = σ 2 + 
O(1/T) it holds that [7]: 
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and therefore, this time can be approximated by 
where Ta = λT is the equivalent of T expressed in years 
(λ years per generation)  and Nt denotes the number of 
individuals at n t who persist alive also in generation T. 
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Furthermore, for T/Z → 0, i.e. practically for T/Z < 10-3) 
we can write 
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 (8) 2.3 Distributions of Coalescence Time 
Let us denote by DT the time of the death of the most 
recent common ancestor (MRCA) of two alleles under 
consideration and by Tc the time to coalescence of these 
two alleles, counted from the present moment T 
backwards into the past. If for the sake of simplicity and 
without loss of generality we assume that considered 
ancestor’s time of the death is also the moment of 
offspring birth, then the equation Tc = T – DT relates 
these three time events.  

or 
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Exponential growth 
In this scenario, even though in calculations we use a 
purely exponential trajectory, we remember that it 
should be properly rounded to the nearest integer value. 
The model is unrealistic, mainly due to its homogeneity  
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in time. Assuming that Zt+1 = R Zt yields the following 
distribution of coalescence time 

Fisher-Wright based distributions for time 
inhomogeneous process 
By inhomogeneity in time we understand process 
evolving with variable in time parameters. Thus we 
generalize the time-homogeneous scenario in which 
parameters of process are constant. We introduce time-
inhomogeneity to be able to model the history with 
variable environmental influence on the reproduction 
abilities of the population. In particular some extra-
genetic inferences about the population growth can be 
incorporated into this approach by applying a 
deterministic function h(t) to change moments of the 
offspring number distribution in time. The most 
influential on our problem moment, then mean µ  of the 
offspring number distribution is then given by µ (t) = 
h(t).  
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and therefore, the expected coalescence time is given by 
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where R = (ZT / Z0)1/T

.      Our goal however was to observe the influence of 
environmental stochastic variability on the shape of the 
coalescence time distribution. Therefore instead of 
deterministic function h(t) we change  µ in time 
according to formula: µ (t) =  µ 0 + ε (t), where µ 0 is 
constant, ε (t) ∼ N (0,σe) and σe indicates the scale of 
environmental variability. In other words we estimate 
Bobrowski coalescence distributions (1) assuming that 
population trajectories follow random environment 
branching processes. It should be noted that in 
distributions we use for offspring number calculation, 
the change of the mean also changes their variance. 

 
2.3.2   Coalescence in Stochastic Models 
 
O’Connell’s distribution for the branching process 
Let us consider slightly supercritical time-homogenous 
Markov branching process with the expected number of 
offspring E(ξ0) = 1 + α/T + o(1/T) and variance 
Var(ξ0) = σ 2 + O(1/T) where the time interval [0,T] of a 
variable t is expressed as a unit interval [0,1] of variable 
r = t/T. Additionally let us assume this branching process 
approximates the long-term history of human population. 
Then [3, 4] for long times T we are able to compute the 
tail of the distribution of DT , i.e the time of death of last 
common ancestor, given that we start the population 
history from x individuals having descendants at T.   

 
Comparison of distributions 
The influence of different population history scenarios 
on the shape of distributions of time to coalescence is 
presented in Fig. 1. We also conducted tests for equality 
of coalescence time distributions PH and PINH resulting 
from time homogenous and inhomogenous branching 
processes simulations respectively. Since we compare 
two empirical distributions based on numbers of non-
extinct simulations n1 and n2 respectively, the testing 
statistics of Kolmogorov-Smirnov test has the form: 

 
Fisher-Wright based distributions for time-homogeneous 
branching processes 
Let us calculate Bobrowski distributions (1) assuming 
that the long-term demographic history is approximated 
by a time-homogenous branching process with different 
offspring distributions. The offspring distributions and 
their corresponding probability generating functions 
(pgfs) we consider are, Poisson (P) distribution  
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The inhomogeneity was introduced by random walk of 
the expected number of offspring with σ1e = 0.09×µ and 
σ2e = 3σ1e = 0.27×µ. For the first, smaller standard 
deviation σ1 the null hypothesis H0: PH  = PINH can be 
rejected at significance level 5%, but not at 2.5%, since 
d = 0.372. For larger value of standard deviation σ2e the 
same null hypothesis can be rejected even at significance 
level 0.1% since d = 6.731 and appropriate 0.1% point of 
the Kolmogorov-Smirnov distribution is 0.949. So with 
the increase of stochastic environmental variation, the 

binary fission (BF) distribution 
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difference between resulting coalescence time 
distribution and analogous distribution for constant in 
time environmental influence is also growing.  

These results contribute into conclusion that completely 
random environmental changes have influence on the 
coalescence time distribution similar to that caused by 
decreased (with respect to Poisson) variance of offspring 
distribution, however spanned over longer time 
(compare first and third row of Fig. 2). It is because 
environmental stochasticity, on contrary to demographic 
one, is not eliminated by the enlarging size of 
population. 

 
 

a)

Cumulative distributions of coalescence time for constant 
populations
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a)

Difference between O'Connell distribution F1 and F- W type 
distribution F2 (Binary Fission offspring number distribution)
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b)

Distributions of time to coalescence for exponential growths
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c)

 Difference betw. O'Connell distrib. F1 and F-W type distrib. F2 
(Poisson offspring distrib. based on 10000 simulations)
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d)

Difference between O'Connell distrib. F1 and F-W type distrib. 
F2 (Poisson offspring distrib. based on 100,000 simulations)
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e)

Difference between cumulative distributions for time 
homogeneous and inhomogeneous branching processes 

-0.014

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0 100 200 300 400 500 600 700 800 900 1000

t

F1
(t)

-F
2(

t)

 f)

Difference between cumulative distributions for time 
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c)

Distributions of coalescence time for 200,000 years of 
population history
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Fig. 2. Pairwise comparison of coalescence time cumulative 
distributions: a) O’Connell’s vs. FW type with BF b) 
O’Connell’s vs. FW type with LF c) O’Connell’s vs. FW type 
with P based on 104 simulations  d) O’Connell’s  vs.  FW type 
with P based on 105 simulations e) FW type with P time-
homgeneous vs. FW type with P time-inhomogeneous 
σe = 0.09×µ f) FW type with P time-homgeneous vs. F-W type 
with P time-inhomogeneous σe = 0.27×µ (lower curve) and vs. 
F-W type with P time-inhomogeneous σe = 0.09×µ (upper 
curve). 
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Distributions of time to coalescence
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In the Table 1 we summarize estimations of relative time 
of coalescence with respect to total population history 
length T. In next sections we substitute to these 
parameterized estimates genetic data. 
 
  3   Applying Genetic Data to Models Fig. 1. .Distributions of time to coalescence for different 

population scenarios: a) cumulative distribution for constant 
effective population size 105, 104 and103 b) distributions for 
exponential growth from 1 to (from right to left) 109, 108, 107, 
106, 105, 104 and 103 c) distributions for stochastic time 
homogeneous growths d) distributions for stochastic time-
inhomogeneous growths. 

Until recently, the estimation of the divergence rate 
could rely only on human-chimpanzee divergence data. 
However due to relatively long time to this divergence, 
all estimates of this time were very inaccurate ranging 
from 4 to 9 million years. Consequently estimated 
divergence rate and time to mtEve could not be accurate, 
ranging from 200,000 to 300,000 years ago for methods  
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based on phylogenetic trees. These estimates not only 
were dependent on inaccurate inference about human-
chimpanzee divergence time. They depended also on the 
method applied for inferring.  
     Situation has changed after 1997 [9] when for the 
first time the mtDNA from H. neanderthalensis dated 
about 40,000 years ago [10] was sequenced. However, 
only less than 400 base pairs were sequenced, hence any 
estimates based on this data were not very reliable. The 
next successful sequencings of Neanderthal mtDNA in 
1999 [5] and 2000 [11, 12] confirmed the accuracy of 
the first experiment and qualitatively changed the 
situation in problems of estimating the last female 
common ancestor of modern humans. The present 
divergence rate no longer has to be guessed relying on 
the assumption of its constancy over a few million years, 
and problematic dating of human-chimpanzee 
divergence.  
     Since it is evident from genetic data [7] that H. 
neanderthalensis did not contribute any mtDNA to 
modern humans, the time of mtEve has to be clearly 
placed after H. sapiens – H. neanderthalensis 
divergence. For the sample of almost 700 modern 
humans the average pairwise number of segregating sites 
in DNA taken from HVRI and HVRII was equal to 
35.3 ± 2.3 [5]. Since the analyzed sequences have the 
total length equal to 600 nucleotides, the average genetic 
distance davgM-N, being the parameter in  our model, is 
equal to 5.9 %. 
 
Table 1. Estimation of relative time to coalescence of a pair of 
alleles for different pop. histories. Apart from constant pop. 
size, the history starts with 1 individual and ends with number 
indicated in 3rd column. The 1st column defines scenario 
 

 
Population trajectory  

γ =  
E(Tc 

/T | N0=1) 

Final 
population size 

O’Connell’s 0.801 107 
FW, P offspring distr. 0.802 107 

FW, BF offspring distr 0.735 0.5×107 

FW, LF offspring distr 0.844 2×107 

FW, P, time inh. σe1  0.794 107 

FW, P, time inh. σe2 0.699 2×107 

FW, const. pop. size 1 109 
FW, const. pop. size 0.995 106 

FW, const. pop. size 0.95 105 

FW, const. pop. size 0.632 104 

FW, const. pop. size 0.1 103 

FW, exp. growth 0.674 109 

FW, exp. growth 0.627 108 

FW, exp. growth 0.565 107 

FW, exp. growth 0.482 106 

FW, exp. growth 0.366 105 

FW, exp. growth 0.216 104 

FW, exp. growth 0.066 103 

 

The estimates of the time to mitochondrial Eve, 
assuming the values of parameters: δ = 1.2 × 10-7

 and 
davg = 0.018 for different population histories are 
presented in the Table 2 and in the Table 3 for stochastic 
and deterministic population scenarios, respectively. 
 
 
Table 2. Estimates of the time to mtEve E(Ta). In models 
assuming stochastic scenarios homogeneous in time, letters P, 
BF and LF state for Poisson, Binary Fission, and Linear 
Fractional offspring distributions, respectively. In stochastic 
time inhomogeneous growth models the Poisson offspring 
distribution was used with the mean (and thus variance) equal 
to σe1  and σe1 = 3×σe2  respectively 
 

Stochastic growth 
FW time-

homogeneous 
FW time-

inhomogeneous.
 

OC 
model P BF LF σe 1 σe 2 
187 187 204 178 189 215 

 
 
Table 3. Estimates of the time to mtEve E(Ta). In 
deterministic growth scenarios the label PS109 denotes the 
final population size equal to 109 individuals, and identical 
notation is applied to labels PS108 PS107 and PS106.  
 

Deterministic growth 
FW exponential growth  

OC 
model

PS109 PS108 PS107 PS106 

187 223 239 266 311 
 
 

By comparison of the Table 2 with 95 % confidence 
interval [111 × 103, 260 × 103] of the mitochondrial Eve 
epoch [5] we conclude that all predictions under 
stochastic models fall into it, despite that particular 
coalescence time distributions are not equal to OC 
distribution according to Kolmogorov-Smirnov test. 
Therefore, the predictions of the FW models are not 
sensitive on actual departures from assumption about 
multinomial sampling, despite their statistically 
significant influence on the coalescence time 
distributions.  
 
4   Conclusion 
One of the goals of this paper was to compare 
distributions of the time to coalescence of a pair of 
alleles under various population scenarios. For stochastic 
trajectories the distribution was approximated by more 
than 105 simulated trajectories over time period of 
2 × 105 years. In so many simulations we considered 
environmental influence on the number of offspring both 
constant and randomly changing in time. Resulting FW 
coalescence time distributions for different offspring 
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distributions were compared with OC coalescence time 
distribution.  
     The Kolmogorov-Smirnov test indicated at 
significance level 0.05 that FW based distributions are 
equal to OC distribution only if the offspring number 
follows Poisson distribution. However, we also 
determined that the expected time to coalescence for any 
reasonable departures from these requirements is not 
very sensitive to these departures. This is important and 
original result. It validates FW models used in many 
population genetic studies also for population histories 
not satisfying all assumptions of the model. Moreover, 
having in mind this robustness of FW model, we 
consider our approach more general than OC model, as it 
is applicable to calculate coalescence time distribution 
for populations evolving both stochastically and with 
variable in time environmental impacts what cannot be 
studied in O’Connell model. 
     Finally, presented approach was used to estimate the 
age of mtEve based on the genetic material from 
contemporary humans and Neanderthal fossil. For all 
stochastic trajectories the resulting time fall into 95% 
confidence interval of the estimate based on 
phylogenetic trees. However our results with the average 
of 193 × 103 years indicate a systematic shift of 30 × 103 
years towards the past compared to phylogenetic tree 
based estimates. Since this is not much, we also showed 
in this paper, that after changing the outgroup from 
chimpanzee to Neanderthals, stochastic genetic models 
with different assumptions tend to give similar 
predictions, and therefore these predictions are much 
more reliable. 
     Written by the author computer program used for 
computations of coalescence time distributions described 
in this paper, as well as in a problem of estimating the 
upper limit of possible Neanderthal admixture in 
mtDNA of early H. sapiens [8] is available on the web 
page: 
http://www.stat.rice.edu/~kimmel/software/coalescence  
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