
Specification Of OCL Constraints On ODP
Computational Interfaces

OUSSAMA REDA, BOUABID EL OUAHIDI
Mohammed-V University, Faculty of Sciences

Dept of Computer Sciences
Ibn Battouta P.O Box 10 14, Rabat

MOROCCO
ouahidi@fsr.ac.ma, redaoussama@yahoo.fr

DANIEL BOURGET
ENST Bretagne

Dept of Computer Sciences
Technopôle Iroise - CS 83818, 29238 Brest

FRANCE
Daniel.Bourget@enst-bretagne.fr

Abstract:-Open Distributed Processing systems are constructed in terms of five viewpoints. The computational
viewpoint which supports three sorts of interaction modelsimposes constraints on their corresponding computa-
tional interfaces. Computational interfaces are stronglytyped so as to sustain meaningful object interaction. We
address in this work the need to re-verbalize both interaction signature concepts, and, typing rules for computa-
tional interfaces in order to steadily formalise them; while, preserving semantics of their initial definitions. This
need comes from the fact that those initial definitions are ambiguous, because, they are described in natural lan-
guage. Based on their new definitions, we shall present a consistent UML model for interaction signatures, as well
as, OCL specification of typing rules concerning computational interfaces supporting those interactions.

Key–Words:ODP, Computational Viewpoint, UML, OCL, Meta-modelling, Interaction Interface Signature, Typing
Rules

1 Introduction

The ODP standardization [1],[2],[3]), initiative has
led to a framework by which distributed systems can
be modelled using five viewpoints. The computational
viewpoint is concerned with the description of the sys-
tem as a set of objects that interact at interfaces. A
computational specification describes the functional
decomposition of an ODP system in distribution trans-
parent terms and is constrained by the rules of the
computational language. These comprise, among oth-
ers, interaction rules. Works within the computational
viewpoint such as [4], [5],[6], have mainly addressed
the specification of the functional decomposition of
an ODP system using UML. Some of these works
[7] have focused on how to consistently present con-
cepts of the ODP computational viewpoint and clari-
fied some ambiguities found while aiming to express
them formally. The solutions proposed were given on
a semantic level. Works such as [16] have also noted
those issues, then, they provided solutions and pre-
sented them on a syntactic level without the need to
relegate them on a semantic one. Other works [17]
have used those solutions as a laying ground for spec-
ifying refinements on all kind of interaction signatures
into signal signatures. However, none of them has
ever aimed to specify constraints related to computa-
tional interface signatures typing and subtyping rules.
In the same spirit of these works our attempt is to

model concepts of the ODP computational viewpoint
and our main focus is the formalization of concepts of
the interaction signature part, as well as, specification
of their associated typing and subtyping rules. Over
the past years, there has been a considerable amount
of research [8], [9] ,[10] within the field of apply-
ing the UML Language citeBoochUnified98, [12] as
a formal notation to the ODP viewpoints, and partic-
ularly to the ODP computational viewpoint [4], [5],
[6], [16],[17]. In this respect, we use the UML lan-
guage to discuss and present our proposals. We also
use the OCL language [13] to specify constraints as-
sociated to computational signature interfaces typing
rules. The remainder of the paper is organized as fol-
lows. Section 2 presents concepts of interaction sig-
natures provided by RM-ODP, as well as, we discuss
how to construct a consistent UML model of interac-
tion signatures. In section 3, we address the issue of
of re-varbalizing the litteral description of computa-
tional interfaces typing rules. In section 4, we spec-
ify the typing rules of interaction signatures using the
OCL language. A conclusion and perspectives end the
paper.

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 303

2 UML Description of Interaction
Signature Concepts

In this section, we present theInteraction Signatures
concepts as they are defined in the computational
viewpoint. These definitions will serve us to discuss
the ideas of the rest of the paper. the definitions are
given as follows:

A computational interface template is an interface
template for either a signal interface, a stream inter-
face or an operation interface. Each interface has a
signature:

• A signal interface signature comprises a finite set
of action templates, one for each signal type in
the interface. Each action template comprises the
name for the signal, the number, names and types
of its parameters and an indication of causality
(initiating or responding, but not both) with re-
spect to the object which instantiates the tem-
plate.

• An operation interface signature comprises a set
of announcement and interrogation signatures as
appropriate, one for each operation type in the
interface, together with an indication of causality
(client or server, but not both) for the interface as
a whole, with respect to the object which instanti-
ates the template. Each announcement signature
is an action template containing both the name of
the invocation and the number, names and types
of its parameters. Each interrogation signature
comprises an action template with the following
elements : the name of the invocation; the num-
ber, names and types of its parameters, a finite,
non-empty set of action templates, one for each
possible termination type of the invocation, each
containing both the name of the termination and
the number, names and types of its parameters.

• A stream interface comprises a finite set of action
templates, one for each flow type in the stream
interface. Each action template for a flow con-
tains the name of the flow, the information type
of the flow, and an indication of causality for the
flow (i.e., producer or consumer but not both)
with respect to the object which instantiates the
template.

As we look at the definition of interrogation signa-
tures, and, since they might be interpreted in differ-
ent ways, we realize that we have several options
and choices to formalize them) [?]. Right now, let’s
rewrite those definitions in a clearer manner, espe-
cially for interrogation signatures. The new defini-
tion of interrogation signatures is as follows:Each

interrogation signature comprises at least two action
templates which are an invocation and its correspond-
ing termination. An invocation could possibly have
more than one associated termination. Invocations
and terminations are action templates and they are
statically described by their name and their number of
parameters. Each parameter is described by its name
and its type.Interrogation signatures do comprise ac-
tion templates. Invocations and terminations are also
both kind of action templates; and, since Invocations
and Announcements describe the same concept from
a practical point of view, it is preferable to merge them
in one term. Furthermore, the typing rules prescribed
by the computational language (see section 3) never
mention theinvocationconcept in their rules; letting it
to be implicitly mixed up with either theinterrogation
or the announcement concept. Thus, Invocations are
now absorbed by Announcements, and, consequently,
the Announcement term present both invocation and
Announcement concepts. The natural way they are to
be formalized is as in Figure 1(see figure 1).

SignalInterfaceSignature

InterfaceSignature

causality: String

StreamInterfaceSignature

Parameter

name: String
type: String

OperationInterfaceSignature

InterrogationSignature
AnnouncementSignature

parameternumbers: Integer

ParameterizedActionTemplate

FlowSignature

ActionTemplate

name: String
causality: String

type: Uninterpreted

0..*

0..*

0..*

0..*

0..*
0..1

1..*

Figure 1: Computational Interface Signatures Model

Terminations are packed in an interrogation sig-
nature. Now, we can either choose to explicitly model
the Termination term, or, let it be implicitly pre-
sented by Action Templates (Parameterized Action
Template) term, as a Termination is an Action Tem-
plate. After we just come to put an invocation into an
interrogation signature, it seems obvious that its asso-
ciated terminations have to be joined to it. And as we
are saying this, we can see how easily terminations
can go nowhere but get packed into an interrogation
signature ((see figure 1). The resulting model (see
figure 1)is a coherent model, based on all the perti-
nent choices made previously.

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 304

3 Computational Interfaces Signa-
tures Litteral Description

Now, it’s time to specify semantics of interaction sig-
natures related to subtyping rules. As we did in the
previous section, we can rewrite those literal rules and
present them under a new form. This process will help
us a lot when we have to formalize them in OCL as it
will facilitate our task. There’s plenty of dissipation in
the way they actually are written in. We shall just con-
centrate on interrogation signatures as the other rules
are already compact and easy to understand. Typing
rules in the computational language corresponding to
interrogation signatures are written as follows: Oper-
ation interface X is a signature subtype of interface Y
if the conditions below are met:

• For every interrogation in Y, there is an interro-
gation signature in X (the corresponding signa-
ture in X) which defines an interrogation with the
same name.

• For each interrogation signature in Y, the cor-
responding interrogation signature in X has the
same number and names of parameters.

• For each interrogation signature in Y, every pa-
rameter type is a subtype of the corresponding
parameter type of the corresponding interroga-
tion signature in X.

• The set of termination names of an interroga-
tion signature in Y contains the set of termination
names of the corresponding interrogation signa-
ture in X.

• For each interrogation signature in Y, a given ter-
mination in the

• corresponding interrogation signature in X has
the same number and names of result parame-
ters in the termination of the same name in the
interrogation signature in Y.

• For each interrogation signature in Y, every result
type associated with a given termination in the
corresponding interrogation signature in X is a
subtype of the result type (with the same name)
in the termination with the same name in Y.

• For every announcement in Y, there is an an-
nouncement signature in X (the corresponding
signature in X) which defines an announcement
with the same name.

• For each announcement signature in Y, the cor-
responding announcement signature in X has the
same number and names of parameters.

• For each announcement signature in Y, every pa-
rameter type is a subtype of the corresponding
parameter type in the corresponding announce-
ment signature in X.

As we look at those literal constraints provided by
the ODP computational language, we begin realizing
they can be aggregated in a more compact description
and especially for operation interface signature typing
rules. Right now, look at the new form these defini-
tions are rewritten in. Operation interface X is a sig-
nature subtype of interface Y if the conditions below
are met:

• For every interrogation in Y, there is an interro-
gation signature X with the same name, with the
same numbers and names of parameters and that
each parameter in the interrogation signature in
Y is a subtype of the corresponding parameter in
the interrogation signature in X.

• For every termination in an interrogation signa-
ture in Y, there is a corresponding termination
in interrogation signature X with the same name,
with the same numbers and names of parameters
and that each parameter in the termination of the
interrogation signature in X is a subtype of the
interrogation signature in Y.

• For every announcement in Y, there is an an-
nouncement signature X with the same name,
with the same numbers and names of parame-
ters and that each parameter in the interrogation
signature in Y is a subtype of the corresponding
parameter in the interrogation signature in X.

Now, that we have reorganised the verbal descrip-
tion of these rules in a clearer manner, we begin to be
aware they do share the same description pattern (see
the definition of signal interface signature in the com-
ing paragraph). subtyping rules for operation signa-
tures, namely (interrogations, invocations and termi-
nations) and signal signatures share the same formal
description in OCL, and therefore, after we specify the
rules relating to signal signatures in OCL expressions
we can easily deduce the OCL specification of opera-
tion signatures subtyping rules with minor changes in
the OCL expression body of signal signature typing
rules specification.

4 Interface Signatures Typing Rules
OCL Specification

Signal interface signature type X is a subtype of signal
interface signature type Y if the conditions below are
met:

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 305

• For every initiating signal signature in Y there
is a corresponding initiating signal signature in
X with the same name, with the same number
and names of parameters, and that each param-
eter type in X is a subtype of the corresponding
parameter type in Y.

• For every responding signal signature in X there
is a corresponding responding signal signature in
Y with the same name, with the same number
and names of parameters, and that each param-
eter type in Y is a subtype of the corresponding
parameter type in X.

This constraint is described using OCL as fol-
lows:

contextSignalInterfaceSignatureinv:
SignalInterfaceSignature.allInstances→forAll(
X,Y|ParameterizedActionTemplate.allInstances→forAll(
SyI|Y.SyI.causality=initiate
implies
ParameterizedActionTemplate.allInstances→exists(
SxI|X.SxI.causality=initiate
and
Y.SyI.name=X.SxI.name
and
Y.SyI.parametersnumber=X.SxI.parametersnumber
and
Parameter→forAll(
Px|Parameter.allInstances→exists(
Py|X.SxI.Px.name=Y.SyI.Py.name
and
Px.oclIsKindOf(Py))))))
and
(ParameterizedActionTemplate.allInstances→forAll(
SxI|SxI.causality=respond
implies
ParameterizedActionTemplate.allInstances→exists(
SyI|SyI.causality=respond
and
Y.SyI.name=X.SxI.name
and
Y.SyI.parametersnumber=X.SxI.parametersnumber
and
Parameter→forAll(
Py|Parameter→exists(
Px|X.SxI.Px.name=Y.SyI.Py.name
and
Py.oclIsKindOf(Px))))))
implies
X.oclIsKindOf(Y))

Stream interface X is a signature subtype of
stream interface Y if the conditions below are met for

all flows which have identical names:

• If the causality is producer, the information type
in X is a subtype of the information type in Y.

• If the causality is consumer, the information type
in Y is a subtype of the information type in X.

This constraint is described using OCL as fol-
lows:

contextStreamInterfaceSignatureinv:
StreamInterfaceSignature.allInstances→forAll(
X,Y|(FlowSignature.allInstances→forAll(Fxp,Fyp|
Fxp.causality=produce
and
Fyp.causality=produce
and
X.Fxp.name=Y.Fyp.name
implies
X.Fxp.type.oclIsKindOf(Y.Fyp.type)))
and
FlowSignature.allInstances→forAll(
Fxp,Fyp | Fxp.causality=consume
and
Fyp.causality=consume
and
X.Fxp.name=Y.Fyp.name
Implies
Y.Fyp.type.oclIsKindOf(X.Fxp.type))))
implies
X.oclIsKindOf(Y))

The rules for operation interface types that are not
defined recursively were given in the previous section:
This constraint is described using OCL as follows:

context OperationInterfaceSignature inv:
OperationInterfaceSignature.allInstances→forAll(
X,Y|(InterrogationSignature.allInstances→forAll(
Iy|InterrogationSignature.allInstances→exists(
Ix|AnnouncementSignaturee.allInstances→forAll(
Ay|AnnouncementSignature.allInstances→exists(
Ax|Y.Iy.Ay.name=X.Ix.Ax.name
and
Y.Iy.Ay.parametersnumber=X.Ix.Ax.parametersnumber
and
Parameter.allInstances→forAll(
Py|Parameter.allInstances→exists(
Px|X.Ix.Ax.Px.name=Y.Iy.Ay.Py.name
and
Py.oclIsKindOf(Px))))))))
and
(InterrogationSignature.allInstances→forAll(
Iy|InterrogationSignature.allInstances→exists(

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 306

Ix|ParameterizedActionTemplate.allInstances→forAll(
Ty|ParameterizedActionTemplate.allInstances→exists(
Tx|Y.Iy.Ty.name = X.Ix.Tx.name
and
Y.Iy.Ty.parametersnumber=X.Ix.Tx.parametersnumber
and
Parameter.allInstances→ forAll(
Py|Parameter.allInstances→exists(
Px|X.Ix.Tx.Px.name=Y.Iy.Ty.Py.name
and
Px.oclIsKindOf(Py))))))
and
(AnnouncementSignature.allInstances→forAll(
Ay|AnnouncementSignature.allInstances→exists(
Ax|Y.Ay.name=X.Ax.name
and
Y.Ay.parametersnumber=X.Ax.parametersnumber
and
Parameter.allInstances→forAll(
Py|Parameter.allInstances→exists(
Px|X.Ax.Px.name=Y.Ay.Py.name
and
Py.oclIsKindOf(Px))))))
implies
X.oclIsKindOf(Y)

5 Conclusion and perspectives

In our past work [22], we have proposed a UML-
Based language for the QoS-aware enterprise speci-
fication of ODP systems in which we focused mainly
on the specification of QoS from an enterprise view-
point. When trying to deal with the QoS concepts
within the computational viewpoint we have met with
some issues as mentioned before. So, we decided to
clarify some ambiguities relevant to the computational
viewpoint. We have already came across those incon-
sistencies in other works [16]and have provided reli-
able solutions to those issues mainly from conceptual
point of view. Then, we used those solutions in order
to refine all kinds of interaction interface signatures
into signal interface signature [17] which can serve as
a basis to define end-to-end QoS in open distributed
systems, and the operation of multi-party binding and
bindings between different kinds of interfaces (e.g.
stream to operation interface bindings). Here, in the
current work, in addition to those solutions, which are
presented in a new and elegant fashion, essentially, for
practical considerations, we have also provided for-
mal constraints relating to typing rules, something,
which has never been approached actually. Now, we
have done that, our work aim to serve as contribution

within the field of formalizing the ODP computational
viewpoint, at the same time that it helps us to move
forward safely and confidently in our coming ones.
We are dealing with the matter of refining computa-
tional interface typing rules into signal interface typ-
ing rules.

References:

[1] ISO/IEC, Basic Reference Model of Open Dis-
tributed Processing-Part1: Overview and Guide
to UseISO/IEC CD 10746-1, 1994.

[2] ISO/IEC, RM-ODP-Part2: Descriptive Model
ISO/IEC DIS 10746-2, 1994.

[3] ISO/IEC, RM-ODP-Part3: Perspective Model
ISO/IEC DIS 10746-3, 1994.

[4] R. Romeo et al.,Modelling the ODP Compu-
tational Viewpoint with UML 2.0IEEE Interna-
tional Enterprise Distributed Object Computing
Conference, 2005.

[5] D.H.Akehurst et al.,Addressing Computational
Viewpoint Design, Seventh IEEE International
EDOC, IEEE Computer Society, 2003

[6] Behzad Bordbar et al,Using UML to specify QoS
constraints in ODP, Computer Networks Jour-
nal pp. 279-304, 2002

[7] R. Romero et al.,Action templates and causali-
ties in the ODP computational viewpointWOD-
PEC’04 pp. 23-27. 2004

[8] M.W.A. Steen and al., Applying the
UML to the ODP Enterprise Viewpoint,
http://www.cs.ukc.ac.uk/pubs/1999/819, 1999.

[9] P.F. Linington et al., The specification and
testing of conformance in ODP systems,
http://citeseer.nj.nec.com/170353.html, 1999.

[10] M. W. A. Steen et al.,Formalising ODP En-
terprise Policies, IEEE Com. Soc. Press,
EDOC’99, 1999.

[11] G. Booch et al.,The Unified Modelling Lan-
guage GuideAddison Wesly, 1998.

[12] J. Rumbaugh and al.,The Unified Modelling
Language Reference Manual, Addison Wesly,
1999.

[13] OMG, UML2.0 OCL Final Specification, OMG
Document ptc/03-10-14, 2003.

[14] pUML group,The Precise UML
http://www.cs.york.ac.uk/puml

[15] M. Gogolla et al.,State Diagrams in UML- A
Formal Semantics Using Graph Transformation,
proceedings of ICSE’98,1998.

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 307

[16] B.El Ouahidi et al,Interaction Signatures and
Action Templates in The ODP Computatinal
Viewpoint, Proceedings of the 6th WSEAS Inter-
national SEPADS’07, Corfu Greece, Feb 16-19,
2007

[17] B. El Ouahidi et al.,Towards Refinement of The
ODP Computational Viewpoint Interaction Sig-
natures, WSEAS Transactions On Telecommu-
nications Journal, pp 601-606, May 2007.

[18] K. Lano et al., Formalising the UML on
Structured Temporal Theories, Conference
ECOOP’98, 1998.

[19] R. Breu et al.,Systems Views and Models of
UML, Physical Verlag, 1998.

[20] A Evans et al.,Core Meta-Modelling Semantics
of UML: The pUML Approach, Proceedings of
UML’99, pp 140-155, 1999

[21] J-M. Bruel et al.,Transforming UML Models
to Formal Specifications, UML’98-Beyond The
Notation, 1998.

[22] B. El Ouahidi et al., An UML-based Meta-
language for the QoS-aware Enterprise Spec-
ification of Open Distributed System, PRO-
VE’02, Kluwer Academic Publishers IFIP se-
ries, pp. 255-266, 2002.

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 308

