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Abstract: - In this paper we have studied experimentally the case of chaotic synchronization of two identical 

nonlinear electric circuits. This is a very interesting research area because of its applications to the field of 

secure communications. The circuit we have used is a second order, Duffing-type, nonlinear electric circuit 

driven by a sinusoidal voltage source. The nonlinear element has a cubic i-v characteristic of the form, 
3i(v) = p v + q v⋅ ⋅ . We have studied the dynamic behavior of the system in the case of the bidirectional 

coupling via a linear resistor. Both experimental and simulation results have shown that chaotic 

synchronization is possible. 
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1 Introduction 
Synchronization, among dynamical variables in 

coupled chaotic systems would appear to be almost 

an oxymoron as the definition of chaos. Since the 

beginning of the ’90s, many researchers have 

discussed the synchronization of two coupled chaotic 

systems [1-4]. Synchronization of chaotic systems 

plays an important role in several research areas. For 

example, neural signals in the brain are observed to 

be chaotic and it is worth to consider further their 

possible synchronization [5]. Other interesting 

examples may be seen from the working artificial 

neural networks [6], biological networks [7], coupled 

chaotic neurons [8], multimode lasers [9], coupled 

map lattices [10, 11], and coupled electric oscillators 

[12]. Also, the topic of synchronization has risen 

great interest as a potential mean in communication 

[13, 14]. The last few years, a considerable effort has 

been devoted to extend the chaotic communication 

applications to the field of secure communications.  

Generally, there are two methods of chaos 

synchronization available in the literature. In the first 

method, a stable subsystem of a chaotic system could 

be synchronized with a separate chaotic system, 

under certain suitable conditions. The second method 

to achieve chaos synchronization between two 

identical nonlinear systems is due to the effect of 

resistive coupling without requiring to construct any 

stable subsystem [15-17]. As we know from the 

bibliography, periodically forced synchronized 

chaotic circuits are much more noise-resistant than 

autonomous synchronized chaotic circuits. 

In this paper we have studied the case of 

bidirectional coupling of two identical, second order 

Duffing-type electrical oscillators.   

 

 

2 The Duffing-Type Circuit 
Duffing’s equation,  

2
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1 12

d x dx
a x b x B cos( t)

dt dt
+ ε ⋅ + ⋅ + ⋅ = ⋅ ω⋅                 (1) 

is one of the most famous and well studied nonlinear 

non-autonomous equations, exhibiting various 

dynamic behaviors, including chaos and bifurcations.  

One of the simplest implementations of the Duffing 

equation has been presented by Kyprianidis et al. 

[18]. It is a second order nonlinear circuit, which is 

excited by a sinusoidal voltage source and contains 

two op-amps (LF411) operating in the linear region 

Fig.1. This circuit has also a very simple nonlinear 

element, implementing a cubic function of the form  

        3i(v) = p v + q v⋅ ⋅                          (2) 

which is shown in Fig.2. 

Denoting by x1 and x2 the voltages across capacitors 

C2 and C4 respectively, we have the following state 

equations. 
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                         (3) 
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where, 3

1 1 1f (x ) p x q x= ⋅ + ⋅ , is a cubic function. 
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Fig.1. The electric circuit obeying Duffing’s 

equation. 

 
Fig.2. The nonlinear element implementing the cubic 

function of the form 3i(v) = p v + q v⋅ ⋅  

 

Finally, from equations (3) and (4), we take the 

Duffing equation (1), where, 
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The values of circuit parameters are R0=2.05kΩ, 

R2=5.248kΩ, R3=R5=1kΩ, R11=R12=0.557kΩ, 

R1=8.11kΩ, C2=105.9nF, C4=9.79nF, V0=2V and 

f=1.273kHz, so the normalized parameters take the 

following values a=0.25, b=1, ε=0.18, ω= 0.8 and 

B=20. The phase portrait of x2 vs. x1 is shown in 

Fig.3, where we can see that the circuit has a chaotic 

behavior. 

 

 

3 The Coupled System 
The system of two identical Duffing circuits 

bidirectionally or two-way coupled via a linear 

resistor RC is shown in Fig.4. 

 
Fig.3. Experimental phase portrait of x2 vs. x1 for 

a=0.25, b=1, ε=0.18, ω= 0.8 and B=20 (Horiz.: 

1V/div., Vert.: 5V/div.) 

 

 
Fig.4. Two Duffing circuits bidirectionally coupled 

via a linear resistor. 

 

 The state equations of the system of Fig.4 has the 

form of equations (6-9), or the form of equations (10, 

11), where, 1 C2x = υ , 2 C4x = υ , ' '

1 C2x = υ , ' '

2 C4x = υ , 

and  0

C 0

R

R 2R
ξ =

+
, is the coupling factor. 

 We have chosen the following values of the 

normalized parameters, a=0.25, b=1, ε=0.18, ω=0.8 
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and B=20, so the single circuit is in a chaotic steady 

state, as we saw before.  
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+ ε + α − ξ + − ξ + αξ +

+ ξ = ⋅ ω

+ ε + α − ξ + − ξ + αξ +
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The two single circuits have different initial 

conditions and we study the dynamics of the system, 

as the coupling coefficient ξ is increased from zero 

(uncoupled circuits). 

 

 

4  Chaotic Synchronization 
Considering the case, that the two coupled circuits 

are identical and are driven by signals of the same 

amplitude, we have studied chaotic synchronization 

as the coupling factor ξ is increased. The bifurcation 

diagram x1 - 1x′  versus ξ is shown in Fig.5. When the 

difference x1 - 1x′  becomes equal to zero, this means 

that the two circuits are in chaotic synchronization.  

 In Figs.6-14 we can see the experimental results 

from the coupled system for various values of the 

coupling resistor RC. The system has a variety of 

dynamical behavior as we saw at the bifurcation 

diagram (Fig.5).We observe that the system appears 

phase-locked states of period-1, period-2, e.t.c. in 

different ranges of values of the coupling factor ξ 

(Figs.6, 8, 9, 12). Also, the system passes from 

chaotic states (Figs.7, 10, 11, 13) to a chaotic 

synchronization (Fig.16) as we expect form the 

bifurcation diagram. The phenomenon of chaotic 

synchronization appears for ξ 0.48> . So, the 

coupled circuits confirmed the theoretical results we 

took from the simulation of the dynamical system, as  

we saw in Figs.6, 11, 12, 14.  

 

 
Fig.5. The bifurcation diagram x1 - 1x′  versus ξ for 

a=0.25, b=1, ε=0.18, ω=0.8 and B=20. 

 

 
  (a) 

 
    (b) 

Fig.6. (a) Experimental phase portrait 1x′  versus x1 

(Horiz.VC2: 1V/div., Vert. VC2΄: 1V/div.), 

(b) Theoretical phase portrait x1΄ versus x1, for 

RC=182kΩ (ξ=0.011). The system is in period-2. 
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Fig.7. Experimental phase portrait 1x′  versus x1 for 

RC=54kΩ (ξ=0.035). 

(Horiz.VC2: 1V/div., Vert. VC2΄: 1V/div.). 

The system is in a chaotic state. 

 

 
Fig.8. Experimental phase portrait 1x′  versus x1 for 

RC=41kΩ (ξ=0.08).  

(Horiz.VC2: 1V/div., Vert. VC2΄: 1V/div.).  

The system is in period-1 state. 

 

 
Fig.9. (a) Experimental phase portrait 1x′  versus x1 

for RC=5.2kΩ (ξ=0.22). (Horiz.VC2: 1V/div., Vert. 

VC2΄: 1V/div.). The system is in a period-1 state.    

 
Fig.10. Experimental phase portrait 1x′  versus x1 for 

RC=5kΩ (ξ=0.23). 

(Horiz.VC2: 1V/div., Vert. VC2΄: 1V/div.). 

The system is in a chaotic state. 

 

 
(a) 

 

 
     (b) 

Fig.11. (a) Experimental phase portrait 1x′  versus x1 

(Horiz.VC2: 1V/div., Vert. VC2΄: 1V/div.),  

(b) Theoretical phase portrait 1x′  versus x1, for 

RC=1.3kΩ (ξ=0.38) The system is in a chaotic state. 

 

Proceedings of the 7th WSEAS International Conference on Systems Theory and Scientific Computation, Athens, Greece, August 24-26, 2007      148



 
 

 

 

 

 

 

 

 

 

 

 

 

   (a) 

 

 
  (b) 

Fig.12. (a) Experimental phase portrait 1x′  versus x1 

(Horiz.VC2: 1V/div., Vert. VC2΄: 1V/div.),  

(b) Theoretical phase portrait 1x′  versus x1, for 

RC=1kΩ (ξ=0.4).  

The system is in period-1 state. 

 

 
Fig.13. Experimental phase portrait 1x′  versus x1 for 

RC=260Ω (ξ=0.47). (Horiz.VC2: 1V/div., Vert. VC2΄: 

1V/div.). The system is in a chaotic state. 

                           
                                       (a) 

 

 
(b) 

Fig.14. (a) Experimental phase portrait 1x′  versus x1 

(Horiz.VC2: 1V/div., Vert. VC2΄: 1V/div.)., 

(b) Theoretical phase portrait 1x′  versus x1, for 

RC=170Ω (ξ=0.48).  

The system is in a chaotic synchronization. 

 

 

5  Conclusion 

In this paper we have studied the dynamics of two 

resistively coupled nonlinear Duffing-type electrical 

oscillators. The two circuits are identical, having 

chaotic dynamical behavior, as we have found out 

from both theoretical and experimental results. We 

experimentally confirmed the expected behavior of 

the system for various values of the coupling resistor 

RC. We have shown periodic and chaotic states, in 

different ranges of values of the coupling factor ξ. 

Finally, we observed a chaotic synchronization when 

the coupling factor ξ 0.48> .  
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