
On the use of the discrete power function for building public-key 
cryptosystems 

 
BOGDAN GROZA 

Department of Automatics and Applied Informatics 
University Politehnica Timisoara 

Bd. Vasile Parvan nr. 2, Room A304, 300223, Timisoara, Romania 
ROMANIA 

bogdan.groza http://www.aut.upt.ro/~bgroza 
 
 

Abstract: - This paper proposes a generalization of the discrete power function that can be used for 
constructing public-key cryptosystems. Particular cases of this function, with specific values for the encryption 
exponent, are used in RSA and Rabin cryptosystem. This paper provides a cryptosystem that can be built on a 
generalization of this function that holds for any value of the encryption exponent. 
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1   Introduction 
The discovery of public-key cryptosystems was a 
great turn in the history of cryptology [5]. These 
cryptosystems are vital to the security of information 
exchange and building public-key cryptosystems is 
an important subject. In order to construct such 
cryptosystems trapdoor one-way functions are 
needed, therefore finding such functions is itself a 
goal.  
     Different trapdoor one-way function based on the 
difficulty of the integer factorization problem can be 
found in literature and the first proposals were the 
RSA and Rabin cryptosystems [10], [11]. Also in 
the last decade new candidates were proposed [7], 
[8], [9].  
     In present days, in order to increase the security 
of public key cryptosystems, padding techniques, 
such as the well known RSA-OAEP [2], are used. 
Also, in order to increase efficiency, public key 
encryption schemes can be integrated in more 
complex frameworks for hybrid encryption, such as 
the KEM/DEM (key encapsulation mechanism, data 
encryption mechanism) from [4] or the Tag 
KEM/DEM from [1], in which public key 
encryption is used to securely exchange a secret key 
that is used to encrypt a message using symmetric 
techniques. 
    The contribution of this paper consists in 
proposing the general case of the discrete power 
function for constructing public key cryptosystems.    
     The paper is organized as follows. In section 2 
some definitions and notations are introduced and 
two classical cryptosystems based on the integer 
factorization problem are recalled (Rabin and RSA). 

In section 3 a public key encryption scheme based 
on the generalization of the discrete power function 
is introduced. Section 4 holds the conclusions of the 
paper. 
 
 
2   Related public key cryptosystems 
 
 
2.1. Some notations and definitions 
In order to simplify the exposition, in this section we 
recall some notations and definitions. 
     Definition 1 (PKE). A public key encryption 
scheme PKE consists in the following three 
algorithms ( ){ . 1 ,kPKE Gen  ( ). , ,PKE Enc m PK  

( )}. ,PKE Dec c SK  such that: 
 

• ( ). 1kPKE Gen : is a probabilistic polynomial 

time algorithm that on input 01 ,k
xk Z >∈  outputs a 

public key, secret key pair ( ),PK SK , i.e. 

( ) ( ), . 1kPK SK PKE Gen← . 

• ( ). ,PKE Enc m PK : is a probabilistic 
polynomial time algorithm that takes as input a 
message m  from the plaintext space, a public key 
PK  and outputs the ciphertext c , i.e. 

( ). ,c PKE Enc m PK← . 
• ( ). ,PKE Dec c SK : is a probabilistic 

polynomial time algorithm that takes as input a 
ciphertext c , a secret key SK  and outputs a 
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message m , i.e. ( ). ,m PKE Dec c SK← . 
 

     We also require that for any key pair 
( ) ( ), . 1kPK SK PKE Gen←  and for any message m  

it holds ( )( ). . , ,m PKE Dec PKE Enc m PK SK← . 
This means that the public-key encryption is sound 
and the decryption of the encryption of a message 
always returns the original message. 
     Definition 2 (The discrete power function). We 
define the discrete power function as: 
  

* *: n nf Z Z→  
( ) modf x x nε=   (1) 

 
Here *

nZ  denotes the multiplicative group of nZ  
which is the set of integers from { }0,1,..., 1nZ n= −  
that are relatively primes to n , i.e. 

( ){ }* gcd , 1n nZ x Z x n= ∈ = , and ε  is an integer 

exponent (different cases according to the values of 
this exponent are to be treated in the following 
sections). The order of the multiplicative group of 

nZ , i.e. *
nZ , is given by the Euler phi function ( )nφ  

which can be computed if and only if the 
factorization of n  is known. Since exponents can be 
reduced modulo the order of the group, i.e. 

( )mod modnx x nε φε ≡ , we assume that ( )1 nε φ< < .  
     Less rigorous, but sufficient for an intuitive 
definition, a one-way function and a trapdoor one-
way function are defined as follows. 
     Definition 3 (One-way function). A function 

:f A B→  is said to be one-way if given x A∈  it is 
easy to compute ( )f x  but given ( )Imy f∈  it is 
infeasible to compute x A∈  such that ( )f x y= . 
     Definition 4 (Trapdoor One-way function). A 
function :f A B→  is said to be trapdoor one-way 
if function f  is a one-way function and there exists 
an information called trapdoor such that given 

( )Imy f∈  it is easy to compute x A∈  such that 

( )f x y= . 
     Additionally, if function f  is also bijective then 
it is called a trapdoor one-way permutation. 
 
 
2.2. The RSA and Rabin cryptosystems  
The RSA and Rabin cryptosystems [10], [11] are the 
first public key cryptosystems constructed on the 
discrete power function and their security relies on 

the intractability of the integer factorization 
problem. They both use a particular case of the 
discrete power function as follows: 
 

* *:RSA n nf Z Z→  

     ( ) ( )( )mod ,gcd , 1RSAf x x n nε ε φ= =   (2) 
 

*:Rabin n nf Z Q→  
     ( ) 2 modRabinf x x n=     (3) 
 
     Here nQ  denotes the set of quadratic residues 

from *
nZ , i.e. { }* * 2, modn n nQ x Z y Z x y n= ∈ ∃ ∈ = .  

     It is important to note that Rabin function is not a 
particular case of the RSA function since the RSA 
function requests that ( )( )gcd , 1nε φ =  and this does 
not hold in the case when the exponent is 2ε =  
since ( )nφ  is always even. This leads to the 
following relevant difference between these two 
cryptosystems: RSA function is bijective, therefore 
it is a trapdoor one-way permutation, while Rabin 
function is not bijective. In the case when the integer 
n  is a product of two distinct primes Rabin function 
is a 4 to 1 map, which means that each ciphertext 
computed with this function, which is a quadratic 
residue, has exactly 4 different plaintexts that 
correspond to it, i.e. 4 square roots, and choosing the 
correct one is possible if some redundancy is used.  
     In the particular case when n  is a Blum integer, 
i.e. n p q= ⋅  and 3mod4p q≡ ≡ , only one of the 
roots of each quadratic residue is also a quadratic 
residue. In this case the Rabin function defined on 
the set of quadratic residues, i.e. :Rabin n nf Q Q→ ,  
becomes a trapdoor one-way permutation. 
    What is probably more relevant in the difference 
between Rabin and RSA cryptosystems is that the 
security of Rabin cryptosystem is proved to be 
equivalent to factoring, it is commonly known that if 
one can compute square roots in *

nZ  then it can also 
factor n  since if x  and y  are square roots of the 
same number and modx y n≠ ±  then ( )gcd ,x y n−  
gives a non-trivial factor of n . Still, a proof about 
the equivalence of RSA to factoring does not exists, 
and more, recently, there is some skepticism that 
such a proof exists [3]. 
     More recent proposals of trapdoor one-way 
functions based on the intractability of integer 
factorization can be found in [7], [8], [9]. 
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3. A public key encryption scheme for 
the general case of the discrete power 
function 
Now we want to extend the use of the discrete 
power function (1) in public key cryptosystems for 
the remaining cases when the exponent is not 
relatively prime to the order of the group, i.e. 

( )( )gcd , 1nφ ε ≠ . Finally, this extension generalizes 
the use of this function for any kind of exponent 
prime or not to the order of the group, i.e. 

( )( )gcd , 1nφ ε ≥ . 
     We proceed by observing that in this case there 
exists a number  τ  such that the following relation 
holds: 
 

( )
( )( )gcd , 1

gcd ,
n
n τ

φ
ε

φ ε

⎛ ⎞
⎜ ⎟ =
⎜ ⎟
⎝ ⎠

  (4) 

 
     Let minτ  be the minimal value of τ  for which 
relation (4) holds. Now we define: 
 

( ) ( )
( )( )min

'
gcd ,

n
n

n τ

φ
φ

φ ε
=    (5) 

 
   Since now ε  is prime to  ( )' nφ  it means that ε  
has a multiplicative inverse in ( )' nZφ . Let this inverse 

be 'δ  such that ( )' 1mod ' nδ ε φ⋅ ≡ . Now we define 
the following function: 
 
( ) ' modg x x nδ=    (6) 

      
     Now we claim the following: 
Theorem 1. For f , g  defined by (1), (6) it holds 
that ( )( ) ( )min min1g f x f xτ τ+ = . Here ( )minf xτ  denotes 

the successive composition of f  with herself for 

minτ  times, i.e. ( ) ( )( )( )min

min

... ...f x f f f xτ

τ

= . 

Proof. From relation (6) we have 
( )( ) 1min min

min 1 ' 'mod modg f x x n x n
τ ττ ε δ ε εδ++ = = , but, 

since ( ) ( )' 1mod ' ' 1 'n k nεδ φ εδ φ≡ ⇔ = +  for some 
integer k , it follows that 

( )( ) ( )( ) ( )min min min
min 1 ' '1 mod modk n k ng f x x n x n

τ τ τε φ ε ε φτ + ++ = =

. Now from relation (5) it is trivial to deduce that 
( ) ( )min ' n j nτε φ φ=  for some integer j  and this 

obviously leads to ( )min ' 1modk nx n
τε φ ≡  which let us 

conclude that ( )( ) ( )min
min min1 modg f x x n f x

ττ τε+ = = . 

     It is also straight forward to extend the result 
from theorem 1 for any minτ τ> , in this case it holds 
that ( )( ) ( )1

min,g f x f xτ τ τ τ+ = ∀ >  and this can be 

proved in a similar manner. 
     The result from theorem 1 addresses the general 
case of the discrete power function and this case 
holds for any value of the exponent ε  (prime or not 
to the order of the group). From this result it is easy 
to build a public key cryptosystem based on the 
general case of the discrete power function. By 
following the formalism from definition 1 we obtain 
the following cryptosystem: 
 

• ( ). 1kPKE Gen : Choose at random two distinct 

k  bit primes p  and q  (here k  is a security 
parameter). Compute: n pq= , ( ) ( )( )1 1n p qφ = − − , 
n pq= . Choose an integer exponent ε  then 
compute minτ , ( )' nφ  as shown in relations (1), (2) 
and 'δ  as the multiplicative inverse of ε  in ( )' nZφ , 

i.e. ( )' 1mod ' nδ ε φ⋅ ≡ . Return ( ),PK SK  where: 

( )min, ,PK n ε τ= , ( ), 'SK n δ= . 

• ( ). ,PKE Enc m PK : Choose a random integer 

r  and compute ( ) min
min 1 1

1 modc f r r n
ττ ε+ += =  and 

( ) min
min

2 mod modc f r m n r m n
ττ ε= ⋅ = ⋅  . Return the 

ciphertext ( )1 2,c c c← . 
• ( ). ,PKE Dec c SK : Compute the value of 

( ) 1'
1 2 modm c c nδ −

= ⋅ . Return the message m .  

 
     Proving that decryption works is a straight 
forward consequence of theorem 1, obviously 

( )( ) min
min 1'

1 modc g f r r n
ττδ ε+= =  from which 

follows that ( ) 1'
1 2 modm c c nδ −

= ⋅ .  

     It may be relevant to note that in fact this 
cryptosystem uses the discrete power function in 
order to exchange a key encrypted in 1c  and use this 
key to encrypt the actual message in 2c . This 
approach is related to the ElGamal cryptosystem [6] 
although here the inversion of the one-way function 
is based on the integer factorization problem.  
     The introduced cryptosystem is more efficient as 
the value of minτ  is smaller since it may be 
expensive to iterate function f  for min 1τ +  times. 
Therefore the most efficient case is when min 0τ =  
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which requires ( )( )gcd , 1nφ ε = , this is in fact the 
case of the RSA function. In this case, since the 
function is a one-way trapdoor permutation, there is 
no reason to exchange a random key and one can 
directly encrypt the message as in the RSA 
cryptosystem - therefore in this case using directly 
the RSA cryptosystem is more efficient. 
     In order to simplify the description of the 
previous cryptosystem we consider giving a 
description of the cryptosystem for a small value of 

minτ  which makes encryption faster. For example we 
take min 2τ = : 
 

• ( ). 1kPKE Gen : Choose at random two distinct 

k  bit primes p  and q . Compute: n pq= , 
( ) ( )( )1 1n p qφ = − − , n pq= . Choose an integer 

exponent ε  such that ( )( )gcd , 1nφ ε ≠  and 

( )
( )( )2

gcd , 1
gcd ,

n
n

φ
ε

φ ε

⎛ ⎞
⎜ ⎟ =
⎜ ⎟
⎝ ⎠

.  Compute 

( ) ( )
( )( )2

'
gcd ,

n
n

n
φ

φ
φ ε

=  and ( )1' mod ' nδ ε φ−= . Return 

( ),PK SK  where: ( ),PK n ε= , ( ), 'SK n δ= . 

• ( ). ,PKE Enc m PK : Choose a random integer 

r  and the compute the ciphertext 
3

1 modc r nε=  then 

the ciphertext 
2

2 modc x m nε= ⋅  . Return the 
ciphertext ( )1 2,c c c← . 

• ( ). ,PKE Dec c SK : Compute the value of 

( ) 1'
1 2 modm c c nδ −

= ⋅ . Return the message m .  

 
     It may be relevant to note that the condition 

2τ =  is also satisfied by the Rabin cryptosystem in 
the case when the modulus is a Blum integer.  
     It is also interesting to investigate when the 
general case of the discrete power function can be 
turned into a trapdoor one-way permutation. The 
following theorem shows how this can be achieved 
by making a restriction on its input domain. 
Theorem 2. Let f  be the discrete power function 
and g  the function from (6) define 

( ){ }* *, , , ,n n nZ x Z Z f xτ λλ α λ τ α α= ∈ ∃ > ∈ =   then 

: n nf Z Zτ τ→  is a trapdoor permutation and g  is its 
inverse. 
Proof. Theorem 2 can proved in a similar manner to 
theorem 1. We prove that for any nx Z τ∈  it holds 

that ( )( )g f x x= . Obviously ( )( ) ' modg f x x nεδ=  

and since nx Z τ∈  we have  modx n
λεα=  for some 

,α λ . This means that 
( )1 1 '' ' 'mod mod modkx n n n

λλ λ ε φεδ ε δ ε εδα α α
+ +≡ ≡ ≡  

and since ( )'k nλε φ  is a multiple of ( )nφ  it leads to 
' modx x n

λεδ εα≡ ≡  and this proves theorem 2. 
     Therefore, if one can choose messages as integers 
from nZ τ  then this function can be used as a trapdoor 
permutation to encrypt them. However we do not 
see any elegant way to perform this, and therefore 
the previously constructed cryptosystems remains 
the only efficient construction. 
However, for the completeness of the result we want 
now to establish the number of elements from nZ τ . 
The following theorem gives a result that can be 
used for this purpose. 
Theorem 3. Let e  be some integer exponent, the 
number of the  residues, i.e. numbers that can be 
written as modex n , in *

nZ  is 
( ) ( )

( ) ( )
1 1

gcd , 1 gcd , 1
p q

e p e q
− ⋅ −
− ⋅ −

. 

Proof. In order to prove this we first want to 
establish the number of the  residues in *

pZ  where p  

is a prime number. We claim that the number of the  

residues in *
pZ  is 

( )
1

gcd , 1
p
e p
−

−
. Let 

( )gcd , 1g e p= − . Since p  is prime *
pZ  has 

generators. Now let α  be a generator of *
pZ , 

obviously some number x  is an the  residue if and 
only if it can be written as mode i pα ⋅ . Also, since α  
is a generator of *

pZ , we have mode i e j pα α⋅ ⋅≡  if 

and only if ( )mod 1i e j e p⋅ ≡ ⋅ − . This can be also 

written as 1g g mod g
g g g
e e pi j −

⋅ ⋅ ≡ ⋅ ⋅  and holds if 

and only if 1mod
g g g
e e pi j −
⋅ ≡ ⋅ . But 

1gcd , 1
g g
e p⎛ ⎞−

=⎜ ⎟
⎝ ⎠

 and therefore there exists 
1

g
e

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

by which the previous relation can be multiplied 

leading to 1mod
g

pi j −
≡ . This leads to the fact that 

if and only if 1mod
g

pi j −
≠  we have 

mode i e j pα α⋅ ⋅≠  and therefore the number of the  
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residues in *
pZ  is 

( )
1

gcd , 1
p
e p
−

−
 (since there are 

1
g

p −  distinct elements in 1
g

pZ − ). 

As the number of the  residues in *
pZ  is established it 

is straight forward to establish the number of the  
residues in *

nZ . Because of the isomorphism 
between *

nZ  and * *
p qZ Z×  (this isomorphism is 

defined by the Chinese remainder theorem which is 
a basic fact in number theory and since it is 
commonly known we will not state it in this paper) 
it follows that the number of the  residues in *

nZ  is 
( ) ( )

( ) ( )
1 1

gcd , 1 gcd , 1
p q

e p e q
− ⋅ −
− ⋅ −

. 

Now, by replacing the value of e  with τε , we 

obtain ( ) ( )
( ) ( )

1 1
gcd , 1 gcd , 1n

p q
Z

p q
τ

τ τε ε
− ⋅ −

=
− ⋅ −

. Since the 

elements of nZ τ  are uniformly distributed the 
probability that a random element 0 r n≤ <  is in nZ τ  

is  nZ
n

τ

. This probability is high only if the value of 

( ) ( )gcd , 1 gcd , 1p qτ τε ε− ⋅ −  is small and in this 

case choosing at random a value that is in nZ τ  can 
happen with high probability. An efficient method 
for choosing values that are in nZ τ  can turn this 
encryption scheme into a digital signature algorithm 
(if one assumes that messages that are to be signed 
can be represented as integers from nZ τ ), padding 
the message with random bits until it becames an 
element from nZ τ  is a solution, however a 
deterministic mechanism will be preferable.  
 
 
4   Conclusion 
A generalization of the discrete power function was 
presented which can be used as a building block for 
public-key cryptosystems. Also a public key 
cryptosystem based on this generalization is 
introduced. We note that this cryptosystem is not 
resistant against active adversaries and for this, as 
future work, we are interested in the use of this 
function in KEM/DEM frameworks in order to make 
the cryptosystem more efficient and to evaluate its 
security against active attacks such as adaptive 
chosen ciphertext attacks. 
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