
Introducing Intelligent Agents into Massively Multi-User Persistent

Worlds

A. GARCÉS, R. QUIRÓS, M. CHOVER, J.HUERTA
Department of Computer Systems

Jaume I University, Castellón, SPAIN
agarces@uji.es, quiros@lsi.uji.es, chover@lsi.uji.es, huerta@lsi.uji.es

E. CAMAHORT

Department of Computer Systems
Politechnic University of Valencia, Valencia,SPAIN

camahort@dsic.upv.es

Abstract: - In this work we propose an architecture and methodology to add virtual agents to Massively Multi-
User Persistent Worlds. It is based on a restricted class of Multi-Agent Systems that meets the requirements of
the problem and simplify the implementation process. To demonstrate the application of our methodology we
add a set of virtual agents to a 3D chat. The agents survey the users to obtain data to evaluate the processes and
components of the virtual world.

Key-Words: - Virtual Environments, On-Line Games, Intelligence for Games, Agent Systems

1 Introduction
In recent years developments in gaming technology
have focused on Massively Multi-User Persistent
Worlds (MMPW). This virtual communities host
thousands of users interacting with each other
through the Internet in real time. Such communities
require new distributed programming paradigms, as
well as virtual life management. Persistence is also a
much needed feature that implies a virtual world that
changes continuously, even when the users are not
connected. Social relationships prevail over years,
and complex societies may live forever on line. Users
are not the only living objects inside an MMPW.
Non-player characters also co-exist with regular
users, and need their own social behavior. This
behavior must be described at a semantic level, a
level that allows control of the environment’s
complexity and dynamic evolution.
 At a semantic level MMPW intelligence
implementations are highly dependant on the
application domain. In most cases intelligence has
been specified using AI techniques embedded in the
application. This prevents changing or removing
faulty intelligence. Alternatively, agent-based
techniques support a more natural specification of
modular, distributed and cooperative systems. Their
agents are autonomous components that can perceive
the environment and react to it. Agents’ social
behavior allows them to interact with each other and
form multi-agent societies.
 Despite their advantages, agent-based systems
have not been widely used in game programming.

The reason is that they are too abstract and lack the
tools needed to implement the system from the
abstract specification.
 To overcome these problems we propose an
architecture and methodology to add virtual agents to
MMPW. It is based on a class of Multi-Agent
Systems (MAS) named Moderately Open Multi-
Agent Systems (MOMAS). These systems impose a
static organizational structure, their agents are
homogeneous, and they have a centralized
mechanism that manages the agents of the system.
The MOMAS methodology has the advantage that it
allows both high- and low-level behavior
specifications. It comes with a programming
language and a development framework for fast
prototyping of MAS. This allows using modern
programming techniques and tools common in other
programming paradigms like OO programming.
These techniques and tools reduce the gap between
abstract specification and system implementation.
 To demonstrate how our methodology can be
applied to an MMPW, we add a set of autonomous
virtual agents to a 3D chat. They survey the users for
data that may be used to evaluate the processes and
components of the virtual world.
 Our paper is organized as follows. In the
background section we describe MMWP and multi-
agent systems. Section 3 introduces intelligent control
of Non-Player Characters and the architecture of a
MOMAS. In Section 4, we model a survey
application that gathers information from the users of
a 3D chat. Section 5 presents our implementation and

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 136

results. The last section includes our conclusions and
directions for future work.

2 Background
The integration of AI techniques in MMPW has been
outlined in several works, using different approaches.
The most promising approach tries to add intelligent
agents to the virtual world. This kind of agents is
usually called Virtual Agents. In this section we
survey previous work in MMPW design and Multi-
Agent Systems.
 MMPW fall into two broad categories: games like
Everquest, Ultima Online, and Asheron’s Call, and
virtual environments or metaverses like Second Life,
Active Worlds or Blaxxun [1]. AI technologies have
been included in these MMPW using either formal
approaches, or scripting approaches and basic data
structure designs [2].
 Formal AI technologies include Finite State
Machines, Fuzzy State Machines and Neural
Networks. Intelligence is programmed using
algorithms embedded in the architecture of the
Virtual Reality system. This is costly and prevents
changes of the system’s AI.
 Alternatively, AI can be programmed using
autonomous components that are simpler but use
more complex communication protocols. These
protocols allow more sophisticated cooperation tasks.
Agent-based systems are one of these techniques that
naturally support a large class of distributed and
cooperative systems.
 Different techniques have been proposed to build
Multi-Agent Systems (MAS), including BDI [3],
MAS-CommonKADS [4], and GAIA [5]. These are
good abstractions, but they do not include specific
programming languages and tools for the
implementation of MAS. This problem has been
partially solved in platforms like JADE [6], ZEUS [7]
or AgentTool [8]. Unfortunately, they preserve many
of the problems of their underlying programming
languages, or they introduce unnecessary abstractions
unsuited for practical implementation.
Despite these limitations, some practitioners apply
MAS technology to implement intelligence in games
or virtual environments. Barella et al include
intelligence in computer games using the JADE
platform [9]. Davies et al. use BDI to specify the
behavior of Virtual Agents [10]. Finally, agent
systems have been used to implement commercial
games like The Sims (www.thesims.com) and Black
and White (www.lionhead.co.uk). However, all these
systems have limitations when representing agent
social abilities.

3 Virtual Agents
Adding AI to Non-Player Characters (NPCs) , also
called virtual agents, is the most important
application of AI to MMPW. It allows creating more
realistic environments and more immersive
experiences.

3.1 Virtual Agent Features in MMPW
Virtual environments and virtual agents have the
following features.

- A virtual environment is entirely observable, that

is, all the sensors of any agent are capable of
sensing the data relevant to the agent’s decision
making.

- Virtual agents are deterministic, that is, the next
state of an agent is uniquely given by its current
state and the action it is about to execute.

- The agent’s behavior is sequential since decisions
are made taking only into account previous
decisions.

- Even though the virtual environment is dynamic,
we assume that it does not change substantially
while the agent is making a decision.

- The multi-agent system is cooperative, that is, it
is made of multiple virtual agents that cooperate
with each other to maximize their performance.

These features suggest certain agent models that
reduce development and maintenance costs while
keeping realistic and immersive environmental
properties. In the following section we present an
MAS subclass that is targeted at this kind of
architecture.

3.2 Moderately Open Multi-Agent Systems
We describe how to organize agents in communities
and how to model and architect a MOMAS. Our
methodology allows modeling and prototyping
MOMAS with the above architecture. Such systems
run on homogenous distributed operating platforms,
each associated with a server.
We assume that applications have a static structure
since agent classes and their relationships do not
change during execution. Services provided by the
agents are also static. Agents are clustered into
communities called packages. A management module
within the MAS handles the life cycle of packages
and agents, their communication, and the social
state’s public information. This module is a special
agent that interfaces between the social state, the

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 137

agents and the user in charge of running the system. It
has tools for language interpretation, message routing
and information management.

Fig. 1. Architecture of a Moderately Open Multi-

Agent System

 The development framework suitable for the
MOMAS architecture includes a Development
Methodology, a Programming Language and a
Project Manager for fast prototyping. These systems
have special features related to the global system
environment and the management of information
resources. We also introduce a notation that using a
top-down approach improves the relationship
between abstract analysis and design, and system
implementation. We do not describe the entire
development framework because it is beyond the
scope of this paper. A description of the models
included in the design and analysis of a MOMAS can
be found in a paper by Garcés et al. [11]. Here we
present a brief description together with a
development example that uses this methodology.

4 Building an Intelligent Virtual

Environment
We describe and demonstrate the use of our model
and development framework adding a set of agents to
a 3D Chat. Our goal is to survey the users of the chat
about the quality of the services of an educational
institution. The results of the surveys are used to plan
organizational improvements. We design a set of
textual questions that the users can freely answer in
natural language.
 In order to specify the system we use our
MOMAS development methodology. This
methodology has three fundamental elements: Roles,
Agent Classes and Agents. Roles are the basic
modeling structure. Agent Classes are made of roles,
and Agents are instances of Agent Classes. The
whole development process, from the analysis to the

implementation, is performed by refining the roles
step by step.
 Agents Classes are computational abstractions that
define the common behavior of a set of entities. An
Agent is an instance of an Agent Class with two
states: a concrete state and an abstract state. The
concrete state is dynamic and specifies the mental
state of the agent. The abstract state is static and
common to all the agents of a class.
 Modeling the environment is another important
issue in our methodology, since other MAS
technologies do not support environmental models
needed in MMPW. Environmental models support
handling global resources and restrictions. The
different components of the MOMAS interact with
the resources of the environment and with each other.
These interactions follow always the restrictions
imposed by the system.

4.1 The Social Object Model
The social object model contains the computational
resources of the MAS. It identifies the objects of the
environment and their general restrictions. In our 3D
chat, the social object model is an abstract
representation of the MMPW scene. Figure 2 shows
the social object model of our system expressed in Z-
notation. ℵ denotes the set of natural numbers, ℜ
denotes the set of real numbers, and ℜ[a,b] = {x ∈ℜ | a
≤ x ≤ b}.

Social Objects : Survey System

Types
CHAR, POS, TIME
(*… Other types …*)

Objects
Region ≅ [id_Region : ℵ; p: POS; radius: ℜ]
Question ≅ [id_Question : ℵ; text: seqCHAR]
Answer ≅ [id_Question: ℵ; t: TIME; id_Region: ℵ1;
id_Avatar: ℵ1; resp: seqCHAR]
Position ≅ [id_Avatar : ℵ; p: POS]
Efectiveness ≅ [id_Region; effectiveness: ℜ[0,1]]
(*…. Other Objects ……*)

Constraints
∀ a,b: Region | a≠b • a.id_Region ≠ b.id_Region
∀ a,b: Question | a≠b • a.id_Question ≠ b.id_Question
∀ a,b: Position | a≠b • a. id_Avatar ≠ b. id_Avatar
∀ a,b: Efectiveness | a≠b • a. id_Region ≠ b. id_Region
(*…. Other Constraints …..*)

Fig. 2. Social object model of the 3D Chat

The environment contains the positions of the users
and the virtual agents, the set of questions of each
survey, and the subdivision of the environment into
regions. We register information for each region to

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 138

determine its effectiveness for each survey. The
effectiveness of the regions is used to manage the
movements of the surveyors. The model imposes a
constraint to guarantee that the identifier of each
object is unique.

4.2 The Role Model
Our surveying system has three basic roles: the
Observer role, the Surveyor role and the Analyst role.
The observer views the whole scene and informs the
rest of entities. The surveyors interact with the users
to get answers from them. The analyst extracts
semantic information from the surveys. In this section
we specify some of these roles using our MOMAS
methodology.
 The Observer role combines the positions of the
users and the avatars in the scene with the
effectiveness of the regions to determine an optimal
position to start a survey. It sends this optimal
position as a message to the surveyor and waits for
surveyor acknowledgment. The Observer role can
update the Social State and requires access to the
effectiveness value of each region. Figure 3 shows
the specification of the Observer role model using our
methodology.

Role Observer

Description
 Tracks the scene and the users to inform Surveyors.
Services
 InformEvalMovement [Surveyor] : POS → Boolean
Activities
 GetPosition : → Boolean
 SetPOS : → POS X ℵ
 Wait : → Boolean
Permissions
 changes Position
 reads Region, Effectiveness
Responsibilities
 Liveness
 Observer = (Getposition(). SetPOS(out p: POS; out n: ℵ).
 Surveyor:: SuggestMovement(p, n).
 InformEvalMovement(in p1: POS). Wait())*
 Safety True

Fig. 3. Observer role model

The goal of the Surveyor role is to survey the users of
the 3D Chat. It waits for a movement
recommendation from the observer, evaluates the
recommendation using its own knowledge and
informs its decision to the observer. After this, it
moves to the optimal position to survey the users.
The surveying process randomly selects questions
and collects answers from the users. The Surveyor

role modifies the Answer object and needs access to
the Question, Region and Effectiveness objects. Its
safety property establishes the maximum time it will
wait for the users to answer. Figure 4 shows the
specification of the Surveyor role model using our
methodology.
 In our example, the Analyst role only determines
the effectiveness of each region. More sophisticated
tasks such as processing the answers in natural
language or applying changes to the organization of
the MMPW can be added using the proposed
methodology.

Role Surveyor

Description
 Survey the users.
Services
 SuggestMovement [Observer] : POS X ℵ → Boolean
Activities
 EvaluateMovement : POS X ℵ → POS
 Move : POS → Boolean
 SelectQuestion : → Question
 SendQuestion : Question → Question
 AwaitAnswer() : → Boolean
 WaitRegión : → Boolean
Permissions
 changes Answer
 reads Question, Region, Efectiveness
Responsibilities
Liveness
 Surveyor = (SuggestMovement(in p: POS; in n: ℵ).
 EvaluateMovement(in p: POS; in n: ℵ; out p1:
POS).
 Observer:: InformEvalMovement (p1).
 Move(in p1: POS).
 (SelectQuestion(out q: Question).
SendQuestion(in q: Question))+ .
 (AwaitAnswer() | WaitRegión())*
Safety (ta – t0) < te

Fig. 4. Surveyor role model

5 Implementation and Results
We have implemented the surveying system in a 3D
Chat that simulates the campus of a real university.
The application allows the user to walk through the
world and to communicate with the different avatars
using a chat service. The system has client-server
architecture. The user executes a client application in
charge of the visualization and the communication
with two server applications. One of these servers
holds the positions of all the avatars (Avatar Location
Server), and the other manages the chat service (Chat
Server).
 The surveying module has been modeled with our
MOMAS methodology, and has been implemented

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 139

using our own programming language and project
manager. These three tools form a development
framework that allows fast prototyping of a MOMAS
specification. Figure 5 shows a screenshot of our
development tool. The left-hand side of the window
contains the system’s main components organized in
a tree. They include packages, agent classes, roles
and a console program that support batch execution.
When a component is selected its associated editor
runs on the Editor window. The console is used to
prototype and debug the MOMAS, and launch its
execution. The application can be compiled to a
program written in JAVA or C++.

Fig. 5. MOMAS development tool

Fig. 6. A screenshot of the final application: a
surveyor approaches a group of users

Fig. 7. Another screenshot of the final application:
performing a survey

Figures 6 and 7 show two screenshots of our final
application. In Figure 6 a surveyor moves towards a
group of users to start a survey. In Figure 7 we can
see how the survey is performed, with the surveyor
asking the users their opinion about the library.

4 Conclusions and Future Work
We have presented a development framework for fast
prototyping of MOMAS. Our methodology can be
used to add intelligent agents to an MMPW. The
main advantage of the proposal is that it allows both
high- and low-level specification of Multi-Agent
Systems. Our MOMAS methodology supports the
specification of the virtual agents with a high-level of
abstraction. The programming language and project
manager of the MOMAS architecture simplify the
implementation of the final system, reducing costs
and improving future system developments.
 To test our proposal we apply it to a surveying
system in a 3D Chat. The system includes three
different kinds of agents: observers, surveyors and
analysts. The different agents cooperate with each
other to achieve the system’s global goals. In our
example, the goal is to survey the users about the
university facilities in order to plan possible
organizational changes.
 In our example system we did not develop the
Analyst role. We expect to add this functionality to
analyze the results of the surveys and make decisions
accordingly. For example, we may want to change
the university’s environment to meet the users’
expectations, adding shops or changing the size of the
classrooms. Or we may want to modify the

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 140

Surveyor’s behavior to ask more specific questions or
change the philosophy of the surveys.

References:

[1] Robert Gehorsam, “The Coming Revolution in
Massively Multi-user Persistent Worlds”
Computer (36) 4, pp 93, 95, April 2003.

[2] Brian Schwab “AI Game Engine Programming”.
Ed. Charles River Media. ISBN: 1584503440.
2004.

[3] Kinny, D., Georgeff, and Rao, A. A methodology
and modelling technique for systems of BDI
agents, 7th Eureopean Workshop on Modeling
Autonomous Agents in a Multi-agent World.
LNAI vol. 1038, pp.56-71. Springer-Verlag, 1996

[4] Iglesias, C.; Garito, M.; González, J. and Velaso,
J. Analysis and Design of multi-agent systems
using MAS-CommonKADS. Intelligent Agents
IV, LNAI vol. 1365, pp. 313-326. Springer
Verlag, 1998

[5] Wooldridge M., Jennings, N, and Kinny, D. The
Gaia Methodology for Agent-Oriented Analysis
and Design. Autonomous Agents and Multi-Agent
Systems vol. 3 no. 3, September 2000, pp 285-
312

[6] Ballifemine, F., Poggi, A. and Rimassa, G. JADE:
a FIPA2000 compliant agent develop-ment
enviroment. Proceedings of the fifth international
conference on Autonomous Agents, ACM, 2001

[7] Nwana, H. S., Ndumu, D.T., Lee, L.C. and Collis,
J.C. ZEUS: A Toolkit for building Dis-tributed
Multi-agent Systems. Applied Artificial
Intelligence Journal, vol.1, No.13, pp.129-185,
1999

[8] DeLoach, Scott A. Analysis and Design using
MaSE and agentTool Proceedings of the 12th
Midwest Artificial Intelligence and Cognitive
Science Conference (MAICS 2001). Miami
University, Oxford, Ohio, March 31 - April 1,
2001

[9] Barella, A., Carrascosa, ., Botti, V. “JGOMAS:
GameOriented MultiAgent System based on
Jade”. ACM SIGCHI international conference on
Advances in computer entertainment technology.
ISBN: 1-59593-380-8. 2006

[10]Davies, N.P., Mehdi, Q.H., Gough, N.E,
Anderson, D., Jacobia, D. & Bornes, V.V. A
review of potential techniques for the creation of
intelligent agents in virtual environments, Proc.

5th Int. Computer Games Conf. CGAIDE’2004,
Microsoft Reading UK, pp 248-256, ISBN 0-
9549016-0-6, 2004

[11] A. Garcés, R. Quirós, M. Chover, J. Huerta and
E. Camahort, “A Development Methodology for
Moderately Open Multi-Agent Systems”,
IASTED Conference on Software Engineering,
Innsbruk, Austria, February 2007.

 .

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 141

