
Using UPnP services with an Intelligent Sensor Network Node

RADU DOBRESCU, MATEI DOBRESCU, MAXIMILIAN NICOLAE, DAN POPESCU

POLITEHNICA University of Bucharest, ROMANIA

Splaiul Independentei 313, Faculty of Control & Computers

radud@isis.pub.ro

Abstract: - The goal of the equipment which is proposed for research and developed in an experimental version

is to associate a typical WSN (wireless sensor networks) node architecture with the UPnP services architecture,

in order use TCP/IP and WEB technologies to manage sensor networks without a specific configuration. The

sensor management software architecture uses UPnP and WSN technologies and allows interactions between

UPnP Control Points and wireless sensors networked in the ambient environment. Even if the sensor devices

are embedded systems with limited resources, the proposed software package allows direct interactions with

UPnP services.

Key-Words: - system prototype, middleware support, networking services.

1 Introduction
The wireless sensor networking is one of the

most essential technologies for implementation of

ubiquitous computing. The sensor nodes are usually

scatted in a sensor field and data are routed back to

the sink by multi-hop. These sensor networks usually

share the same communication channel. Sensor
nodes have limited in power, computational

capacities, memory and short-range radio

communication ability. The limited battery life of

sensor nodes raises the efficient energy consumption

as a key issue in wireless sensor networks. There are

four major sources of energy waste: collision,

overhearing, control packet overhead and idle

listening. References as [1], [2], [3], [4], [5] discuss

different procedures to optimize the power
consumption. The aim of this paper is to describe the

implementation of a wireless sensor with specific

facilities for integration in a sensor network. The
design offer a microcontroller based hardware

architecture, using TinyOS operation system [6] and

propose a solution for integration of this devices in
UPnP Services Network [7]. Its performances: low

power consumption, reduced error bit rate, high

computational capacities are fair enough to

recommend it for use as a node in a WSN and justify

its acronym: ISNN – Intelligent Sensor Network

Node. In the same time, the device proposed in this

paper is part of a highly performing communication

system that aims to combine message processing

procedures with signal processing procedures and
multi-point transmission organisation.

2 Architecture of the Intelligent

Sensor Network Node
The specific requirements for an Intelligent Sensor

Network Node (ISSN) particular hardware and

software architecture can differ depending on the

application:

• A large-area low-density sensor network

deployment will require a more powerful radio

than a short range indoor or on-the-body sensor
application.

• Applications where high data rates and complex

signal processing functions are required will

benefit from a more powerful signal processor.

• Sensors and associated sensor electronics will

vary from application to application.

• For some applications the power can be provided

by an appropriate primary battery, whereas

others call for a complete power management

system that can scavenge energy from the

environment.

2.1 Hardware architecture
ISNN is realized on the principle of co-design [8]. It

has 6 input channels, each channel having a DAC on

10 bits. Data are processed by Atmel Atmega 128
microcontroller with 128 KB Flash memory. The

data transmission/receiving is realized with Chipcon

CC1000 radio module. The device has also an

external flash memory of 512KB utilized to store the

data when the connection with the base station is not

available. The data acquisition is realized with

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 371

MTS510CA device. The ISNN module can be

connected at a PC by a dedicate MIB510CA serial

interface, so realizing a bridge between this PC and

the sensors placed in the environment. The block

scheme of the hardware structure is shown in Fig. 1.

Figure1. ISSN hardware architecture block scheme

2.2 Software architecture
The ISNN software architecture responds to the

requirements of the software framework of the whole

network. The components of the framework provide

the functionality of single sensors, sensor nodes, and

the whole sensor network. According to these

components, applications are classified into sensor

applications, node applications and network

applications [9]. The software implemented on

ISNN corresponds to the first two levels (see Fig.2).

Figure2. ISSN software architecture block scheme

A sensor application contains the readout of a sensor
as well as the local storage of data. It has full access

to the hardware and is able to access the operating

system directly. The node application contains all
application specific tasks and functions of the

middleware to build up and maintain the network

e.g., routing, looking for nodes, discovering services,

and self localization. The term middleware refers to

the software layer between operating system and

sensor application on the one hand and the

distributed application which interacts over the
network on the other hand [10]. Primary objective of

the middleware layer is to hide the complexity of the

network environment by isolating the application
from protocol handling, memory management,

network functionality and parallelism. A middleware

for sensor networks has to be· scalable, generic,

adaptive and reflective. Resource constraints

(memory, processing speed, bandwidth) of available

node hardware require an optimization of every node

application. Thereby, the application is reduced to all

essential components and data types and interfaces

are customized (scalable middleware). The

components of the middleware require a generic
interface in order to minimize customization effort

for other applications or nodes (generic middleware).

The mobility of nodes and changes of infrastructure

require adaptations of the middleware at runtime

depending on the sensor network application. The

middleware must be able to dynamically exchange

and run components (adaptive middleware).

Reflection covers the ability of a system to

understand and influence itself. A reflective system
is able to present its own behaviour. Thereby, two

essential mechanisms are distinguished – the

inspection and the adaptation of the own behaviour
(reflective middleware).

2.3 TinyOS design
In TinyOS, we have chosen an event model so that
high levels of concurrency can be handled in a very

small amount of space. Tiny-OS provides

mechanisms (events and components) to statically

define linking between layers. The predefinition of

needed instances at compile time prevents from

dynamical memory allocation at runtime. Tiny-OS

supports the execution of multiple threads and

provides a variety of additional extensions like the

database TinyDB for cooperative data acquisition.

 The complete system configuration consists of a

tiny scheduler and a graph of components. A

component has four interrelated parts: a set of

command handlers, a set of event handlers, an

encapsulated fixed-size frame, and a bundle of

simple tasks. Tasks, commands, and handlers

execute in the context of the frame and operate on its
state. Commands are non-blocking requests made to

lower level components. Tasks allow us to simulate

concurrency within each component, since they
execute asynchronously with respect to events.

Operating System

CPU

Sensor Driver

ServicesModulesAlgorithms

Host Middleware

Middleware Management

VM

Sensor

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 372

3 UPnP Services for WSN
UPnP is a dedicated architecture for point to point

interconnection of intelligent devices, wireless
devices or different kind of computers. UPnP define

a set of protocols that allow the access of the devices

in the network without a special configuration
procedure. The UPnP stack has 6 levels : (1) Device

Addressing, (2) Device Discovery, (3) Device

Description, (4) Action Invocation, (5) Event
Messaging and (6) Presentation (see figure 3).

Figure3. Block scheme of the UPnP multilevel

architecture

The levels 0,1 and 2 are mandatory, while the levels

3, 4 and 5 are optional.

Once a device is added in the network, its description

becomes visible for all the control points, together

with the available services. The information is

presented in a XML document. The control points

can invoke an action on the device by sending a

message towards an URL contained in the device

description. As one can see the UPnP network has
two components. The first component is the UPnP

device point having the role of a server; the second

component is the UPnP Control Point which can

control all the devices interconnected in the UPnP

network. The following features characterize the

UPnP stack levels.

 Addressing. Each device must have a client

DHCP (Dynamic Host Configuration Protocol),

which search for a DHCP server when the device is

introduced for the first time in the network. If there
is no available DHCP server, the device must use

Auto IP to obtain an IP address from a ser of

reserved addresses.
 Discovery. When an UPnP device is added in

the network, the UPnP protocol allows publishing

the services that it can offer to the control point. In a

similar way, the UPnP protocol allows to a new

added control point to search the UPnP networked

devices.

 Description. For each service, the description

contains a list off the commands (actions) specified

by the list of the arguments and their type and also
the list of variables, specified by type, value domain

and event characteristics.

 Control. The control messages are expressed in

XML using the Simple Object Access Protocol

(SOAP) protocol. As a response to such a message,

the service will return a value that defines the

invoked action.
 Eventing. Each service will publish the changes

of the state variables, while the control points who

have subscribed will receive the event messages
contawining the variables name and their current

values. These messages are expressed in XML

format using the General Event Notification

Architecture (GENA) protocol.

 Presentation. If the device has a presentation

URL, then the control point will obtain the page

from this browser and according to the page

capabilities, will visualize or control the status of the

device.

4 A Case Study – Design of a Server

C# Application
In This application written in C# language is a bridge

between the sensors from a wireless network and the

UPnP control points. The software architecture of the

application, showed in figure 4, is a modular one.

 The communication module ensures a serial or

TCP (Serial Forwarder) sensor connection. The

module is implemented in a PortConnection class

and has two constructers. The first constructer is

used to initialize a serial connection, the second to
open a TCP/IP connection.

Figure 4. Software architecture of the C#

application.

 Figure 5 shows how to invoke a remote

command on a wireless sensor. The action invoked

3 - Control 4 - Eventing 5 - Presentation

2 - Description

1 - Discovery

0 - Addressing

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 373

by a Control Point is changed in a TosMsg message

send to the destination sensor. The commands get (to

obtain a parameter value) and set (to modify a

parameter value) are called from the set of defined

calls, which are blocking calls.

Figure 5 Interactions between sensors and UPnP
Control Points.

5 Conclusions
The device proposed in this paper is part of a highly
performing communication system that aims to

combine message processing procedures with signal

processing procedures and multi-point transmission

organisation. The sensor management software

architecture uses UPnP and WSN technologies and

allows interactions between UPnP Control Points (in

software applications supported by PCs, PDAs or
Smart Phones) and wireless sensors networked in the

ambient environment. Even if the sensor devices are

embedded systems with limited resources, the

proposed software package allows direct interactions

with UPnP services.

 The proposed ISNN architecture differs from

previous work in being based explicitly on a

hardware/software co-design approach supporting

the deployment of novel programming language
constructs directly onto the hardware in order to

improve optimization. We are currently completing

feasibility studies on the components of our
proposed architecture, prior to initial development

work. Our immediate research challenges are to

determine appropriate abstractions for the
construction and deployment of the embedded

systems architecture from hardware and software

perspectives. We intend to evaluate our work against

a range of applications in order to check the qualities

of individual dedicated solutions.

ACKNOWLEDGEMENTS

This work was partially supported by the Romanian

Ministry of Education and Research under Grants
No. 1467A/2005 and No. 434 TD/2006

References:

[1] G. Pottie. and W. Kaiser, “Wireless integrated

network sensors” Communication of the ACM,

43, no. 5, 2000, pp. 51-58.
[2] S. Olariu, L. Wilson, M. Eltoweissy and K.

Jones, ”Training a wireless sensor network”,

Mobile Networks and Appl., 10, 2005, pp. 151-
167

[3] F. Akyildiz, W. Su, Y. Sankarasubramanian and

E. Cayirci, „Wireless sensor networks: A

survey”, Comp. Networks, 38 (4), 2002, pp. 393–

422.

[4] T.van Dam and K.Langendoen, “An Adaptive

Energy-Efficient MAC Protocol for Wireless

Sensor Networks,” SenSys, pp.171-180, 2003

[5] J. Cortes, S. Martinez, T. Karatas and Francesco

Bullo, “Coverage control for mobile sensing
networks,” IEEE Transactions on Robotics and

Automation, vol. 20, pp. 243-255, 2004

[6] C.L. Fok, “TinyOs tutorial”, CS521,

www.princeton.edu/~wolf/EECS579/imotes/tos_

tutorial.pdf

[7] H. Song, D. Kim, K. Lee and J. Sung, “UPnP-

based Sensor Network Management Architecture

and Implementation”, Second International

Conference on Mobile Computing and
Ubiquitous Networking, 2005, Osaka

[8] A. Nisbet and S. Dobson, “A systems

architecture for sensor networks based on
hardware/software co-design”, In Mikhail

Smirnov, editor, Proceedings of the 1st IFIP

Workshop on Autonomic Communications,
Springer Verlag, 2004.

[9] R. Dobrescu, M. Nicolae, F. Stoica and R.

Varbanescu - Design of an Intelligent Sensor

Network Node, Proceedings of the10th

International Conference on Optimization of

Electrical and Electronic Equipments

OPTIM'06,Brasov, 2006, p. 71-78

[10] C. Gui and P. Mohapatra, “Power conservation

and quality of surveillance in target tracking
sensor networks”, Information Processing in

Sensor Networks, 2005, pp. 246 – 253

Sensor

UPnP

Control

Point

UPnP

Services

Module

UPnP-WSN

Bridge Module

Communication

Module

Command

Function

 Request

Request

Response

Message response Response

Result

1

2
3

4

6

5

7

8

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 374

