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Abstract: - In this paper we present an algorithm for continuous-time model identification from sample data 
using the weighted power moments of the output signal of a linear, time-invariant system. While most of the 
latest methods used in identification utilize a discrete-time model, the moments method is an alternative 
approach to directly identify a continuous-time model from discrete-time data. The method defines a set of 
relationships between the power series coefficients of a stable transfer function and the power moments of the 
output signal of this system. Based on these relations, an algorithm for off-line parameter identification is 
developed. The method is applied to identify the parameters of a real experimental platform.
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1  Introduction
Due to the success of digital computers and the 

availability of digital data acquisition boards, most 
system identification schemes usually aim at 
identifying the parameters of discrete-time models 
based on sampled input-output data. Over the last 
few years there has been strong interest in 
continuous-time approaches for system 
identification from sampled data. Identification of 
continuous-time models is indeed a problem of 
considerable importance in various disciplines such 
economics, signal processing and control [3]. A 
simplistic way of estimating the parameters of 
continuous-time model by an indirect approach is to 
use the sampled data to first estimate a discrete-time 
model and then convert it into an equivalent 
continuous-time model. However, the second step, 
i.e. obtaining an equivalent continuous-time model 
from the estimated discrete-time model, is not 
always easy. Difficulties are encountered whenever 
the sampling time is either too large or too small
[11].

Whereas a large sampling interval may lead to 
loss of information, making it very small may create 
numerical problems due to the fact that the poles are 
constrained to lie in a very small area of the z-plane 
close to the unit circle. Some conversion methods 
use the matrix logarithm which may produce 
complex arithmetic when the matrix has negative 
eigenvalues. Moreover, the zeros of the discrete-
time model are not as easily transformable to 
continuous-time equivalents as the poles are [9, 10].

In every tuning algorithm, the most difficult phase is 
the identification one, the whole control design 
depending on it. We can underline two approaches 
of identification algorithms: on-line identification 
algorithms and off-line identification algorithms. In 
on-line identification approach, the result is obtained 
in the same moment with a new observation data 
acquisition. The on-line identification deals with 
parametric methods (deterministic or stochastic), 
which identify the parameters of a mathematical 
model with a structure apriori known. The main on-
line methods can be found in [2], [5], [8].

In off-line identification approach it is possible to 
identify both the structure of linear time invariant 
systems and the parameters of the mathematical 
model using observations over a larger time interval, 
including the steady state. The moments method 
presented in this paper is an off-line integral 
method. 

2  Moments Definition
The moment problem is a classical one in the 
functional analysis [1], [6]. The order j power 
moment [4] (denoted mj) of a function y(t) is a 
characteristic of an original function with index of 
convergence 00 ≤σ  with the following Laplace 
transform:
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Denoting by )(tε  deviation of y(t) from steady state 
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0),()()( ≥−∞= ttyytε  one define the order j-
power moment [7] (that we will call the classical 
moment) for function y(t):
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The Laplace transform of error )(tε  is:
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The complex function e-st is holomorphic in the 
complex plane s and it has an ordinary point to 
infinity then, the Taylor series around s=0 is 
uniform convergent with radius ∞ , so:
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Because )(tε  is bounded, multiplying (4) with )(tε
one get an uniform convergent series in respect with 
t,
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which can be integrated term by term on the interval 
],0[ ∞∈t , 
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3  Moments Method Based 
Identification
Suppose first that )(∞y is known and bounded. The 
transfer function that we want to identify is a stable 
rational function with non-minimum phase with 
unknown order and parameters: n, m, ak, bk and 
a0 ≠ 0, b0 ≠ 0.
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If the input signal is a step function 
s
usU ∆

=)(

then, if )(∞y =finite ⇒ 00 ≠a and,  if 0)( ≠∞y ⇒
00 ≠b ,    there are no poles and zeros in the origin 

of the complex plane. 
In these conditions one can normalize the transfer 
function coefficients:
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Developing in power series of s the function 1/H(s):
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and by identification term by term and normalising, 
one obtain:
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From (10) and (13) one obtain:
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and by identification term by term: 
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Now, one can construct an identification algorithm 
in three steps:
Step 1: From input-output sampled data one 
calculate the moments mj using the relation (2)
Step 2:  From relations (15) one computes the 
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coefficients kC ′ . If there is k=n such as for nk ≥∀ , 
the system is compatible, then n is the denominator 
degree and the number of unknowns m is the 
nominator degree of the transfer function. This can 
be express in the following algebraic form:
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Step 3: One computes the coefficients of the 
transfer function with the relations (11), (12) (firstly 
the coefficients mkbk ≤≤′ 1, , then nkak ≤≤′ 1, ).
Example: One consider a system described by the 
following transfer function: 
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The experimental step response is presented in 
Fig. 1.
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Fig. 1 Step response of H1(s)

It is easy to observe that 1)( =∞y . The values of the 
moments mj and coefficients kc′  are:  
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Neglecting the small terms due to the 
approximation error, one obtain the following 
identified transfer function:       

199.798.3
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4  Weighted Moments Method Based 
Identification
As it was presented in previous sections, the j-power 
moment of an original function f(t):[0,∞ )→R is 
given by the following relation:
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represent a weight applied to the function )(tf in 
integration.
In identification, the moments mj calculus using 
relation (17) when value of  j is great,  creates a 
series of problems like:
- the weighting function )(tjψ  unbound;
- the integration is effectuated on a finite time 
interval;
- the f(t) function represents the overall response 
of a system which contains both the free component 
due to the initial conditions and the forced 
component on which the moments method is based.
In Fig. 2 are presented time evolution for few  

)(tjψ functions. One observe that for small values 
of t, the f(t) signal in relation (17) is less amplified, 
but for big values of t, big weightings appear which 
can exceed the precision possibilities of the 
numerical calculus. 
The convergence of the integrals from relation (17) 
is done by the condition 00 <σ . For slow processes 
the convergence radius is very small and the 
transient response is very long so, in the integrals 
evaluation components of the form )()( tftjψ , that 
is a product between a very large number

2),( ≥jtjψ , and  a finite value f(t).
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Fig. 2 Weighting functions for classical moments
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On the other hand, if the integration is stopped to 
a finite moment t2, the j-power moment of f(t) is 
approximated by:
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and finite interval evaluation error:
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is big even for a big value of t2.
For these reasons one uses the weighted power 
moments that are defined by the following relation:
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),( αtw  is an original functions family defined par 
rapport with t in [0,∞ ) interval, with parameter

0≥α and the convergence radius 01 σσ = .
The time function Rtf →∞),0[:)(α , defined by:

),()()( αα twtftf = (22)

is an original function also, with convergence 
radius:

012 σσσ +=                                                         (23)

The order j weighted moment appear as a real 
functional of function f: 
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The Laplace transform )(sFα of )(tf α  function 
admits a power series expansion:
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uniform convergence and holomorphic inside of a 
circle with the radius: 
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So, choosing a weighting ),( αtw with
0)(11 ≤= ασσ one obtain a series with a larger 

convergence radius, that has obvious advantages for 
numerical calculus. 
The weighted moments contain the same 
information about f function as the classical 
moments but they have a better numerical 
robustness due to the condition imposed to 
convergence radius.
There are many possibilities for choosing the 
weighting function ),( αtw using efficiency and 
applicability criterions. In this work we consider: 
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For this weighting function, one get:
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Unlike of )(tjψ presented in Fig. 2, the kernel 
),( αψ tj presented in Fig. 3 for some values of j, 

realize a weighting at the moment t: 
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Fig. 3 The kernel ),( αψ tj

Depending on value of α  parameter, the weighted 
moment give more importance to some time 
evolutions. For a big α , the attention is focus on 
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initial evolution and for a small α , towards the final 
evolution. By choosing many values for α  in 
identification procedures one get the essential 
aspects of time evolution of the signal f(t). 
The identification algorithm remains the same, the 
only modification is that we will process the 
weighting function )(tf α  instead of f(t). Also, 
instead of the original transfer function: 

)(
)(

...
...)(

10

10

sU
sY

sasaa
sbsbbsH n

n

m
m =

+++
+++

= (36)

characterized by kk abmn ,,, , we will obtain the 
following transfer function:

)(
)(

...
...)(

10

10

sU
sY

sasaa
sbsbbsH n

n

m
m

α

α

ααα

ααα
α =

+++
+++

= (37)

characterized by αα
kk bamn ,,, .

When ,),( tetw αα −= then

)()( αα += sHsH (38)

Example: One considers a system described by the 
following transfer function:
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Fig. 4 Step response of H2(s)

As it can be seen, 0)( =∞y . Using the identification 
algorithm one get: 0.0483=αK , 6147.01 =αa , 

0992.02 =αa .
One obtains the following estimated transfer 

function:

10515.2083.4
)( 22 ++
=

ss
ssH

5 Experimental Results
To illustrate the performance of the proposed 
identification algorithms, one a real Quanser 
experiment using a DC servomotor with built in 
gearbox, is provided in this section. The “rotational 
series” that we have is the SRV-02ET (E-encoder, 
T-tachometer), and the DC servo is shown in the 
Figure 3. A high quality DC servo motor is mounted 
in a solid aluminum frame. The motor drives a built-
in Swiss-made 14:1 gearbox whose output drives an 
external gear. The motor gear drives a gear attached 
to an independent output shaft that rotates in a 
precisely machined aluminum ball bearing block.

The output shaft is equipped with an encoder. This 
second gear on the output shaft drives an anti-
backlash gear connected to a precision 
potentiometer. The potentiometer is used to measure 
the output angle. The external gear ratio can be 
changed from 1:1 to 5:1 using various gears. Two 
inertial loads are supplied with the system in order 
to examine the effect of changing inertia on closed 
loop performance. In the high gear ratio 
configuration, rotary motion modules attach to the 
output shaft using two 8-32 thumbscrews. The 
square frame allows for installations resulting in 
rotations about a vertical or a horizontal axis.

Fig. 5 SRV02ET

The system is interfaced by means of a data 
acquisition card and driven by Matlab/Simulink 
based real time software. The model of this system 
can be found from physical considerations. One 
considers as input U of the system the voltage 
applied to the motor armature and as output Y of the 
system the angle of the output shaft. As is described 
in [12] the transfer function of the system has the 
following the form:
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Clearly, the open loop position response of the DC 
motor is unstable due to the pole at the origin. A 
proportional controller in closed loop is used in 
order to stabilize the system and to perform the 
identification experiments. The closed loop transfer 
function is:

clp
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KssT
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++
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or, equivalently:
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cK - controller gain.
In Fig. 6 the experimental step response of the 

closed-loop system with controller gain Kc=0.2 is 
presented.
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Fig. 6 Step response of the closed-loop system with 
controller gain Kc=0.2

Using the algorithm described above one can 
identify the a1 and a2 parameters and then one can 
deduce Tp and Kp. One obtains the following values:

00095.0;0412.0 21 == aa

and from relations (42) one get:

,0232.0
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=

=
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and, the identified DC motor transfer function:
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6   Conclusions
In this paper we presented a novel method for 
continuous-time invariant system identification. The 
method has two main advantages related to most 
methods found in the specialty literature: first, there 
is no need of apriori information about the structure 
of the identified system and second, the continuous-
time model is obtained direct from the input-output 
sampled data. The algorithm determines the order of 
the system from the relation between the power 
moments and the transfer function coefficients. The 
method was applied to identify the parameters of a 
real experimental platform consisting of a DC 
servomotor with built in gearbox. Because the open 
loop system is unstable, the closed loop 
identification was performed. 
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