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Abstract: - For double-diffusive convection the sequence of bifurcations from stationary motion to stochastic 
motion was investigated. Attractor has the structure of a Mobius band in chaotic regimes. With the help of Poincare 
sections and Poincare maps modification of the attractor were illustrated. First, Poincare map can be represented as 
a one-valued function, then with the growth of supercriticality Poincare map remains one-dimensional but with 
many minima and self-intersections so it can’t be approximated with some function. Relative residual was 
calculated for all the calculations, so we can affirm that the properties of the solutions presented practically exactly 
correspond to the Navier-Stokes equations (third range of accuracy). 
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1   Introduction 
At present time there is a great many studies devoted 
to transition to chaos in dynamical systems. A string 
impulse to this domain was made by fundamental 
works by Ruelle and Takens [1] and famous example 
of Lorenz [2], which is obtained by approximation of 
Navier-Stockes equations with first harmonics after 
application of Bubnov-Galerkin method. Despite the 
beauty and importance of Lorenz attractor, it has 
nothing to do with the initial physical problem, all the 
properties where thrown out with the higher 
harmonics. Till today we don’t have many 
investigations of attractors of hydrodynamical systems 
with full Navier-Stockes equation. In the present work 
for double-diffusive convection properties of the 
attractors are investigated. During the calculations we 
estimated the relative residual after substitution of the 
solution to the initial system of equations. The relative 
residual was about 10-3. 
 
2   Problem Formulation 
 
Let the temperature and the salinity to be supported 
constant on the boundaries of the plane layer 0z =  
and , the acceleration of gravity is directed 
along axis . Let  

z H=
z H  and  be considered as 

the units of length and time, where  is the 
coefficient of the thermal diffusion. To describe the 
dependence of the density of liquid on the temperature 

 and salinity the  let us take linear law 

2
TH k/

Tk

T S
0 (1 )T Sρ ρ α β= − + . In two-dimensional problem 

for the components of the velocity one can introduce 

the nondimensional  stream function ψ : 
x T z z T xv k H v k H= ψ ψ/ , = − / . Hereafter 

coordinates x  and  and time  are supposed to be 
nondimensional. Instead  of the temperature and the 
salinity let us introduce nondimensional variables 

z t

sτ , : 
0 1 0 0 1 0( )(1 ) ( )(1 )T T T T z S S S S z s= τ+ − − + , = + − − +

0 1 0 1T T S S
, 

where  , ; ,
0z = 1z

 mean temperature and salinity on 
the layer boundaries (for  and =  
accordingly). Closed system of equations for double-
diffusive convection in 
plane case has the following form  

2( ) ( )t T x S xR R s Jψ σ τ ψ ψ ψΔ + − − Δ = ,Δ ;
( )t x J

 
τ ψ τ ψ τ+ −Δ = , ;

( )t xs k s J s
 

ψ+ ψ− Δ = , .

3
1 0( ) ( )T T

 
In this system four nondimensional parameters are 
introduced - the Rayleigh number for temperature 
R g T T H kα ν≡ − /

3
1 0( ) ( )S T

, the Rayleigh number for 

salinity R g S S H kβ ν= − /

TS KK / Tk

, the ratio of the 
coefficients of salt diffusion and temperature 

, the Prandtl number σ ν≡ /
( )J f g

. Jacobian 
,  is determined by formula 

( ) x z z xJ f g f g f g≡ − , 0z = 1z. For  and , =   the 
Rayleigh boundaries conditions of absence of 
tangential viscosity forces are taken. So, the full 
system of boundary conditions is: 

0 при 0 1s zψ = ψ τΔ = = = = , .  
Results of some  numerical computations of the 
boundary problems, periodic with respect to x   can be 
found in fundamental work [3]. 
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2.1 Method of investigation. 
 
Unlike the work [3] let us seek the solution of the 
initial system by Bubnov-Galerkin method in the 
form, satisfying the boundary condition: 

( )sin( 2)sin

( ) cos( )sin
2

N ij
i j

N ij
i j

t i x j z

xt i j z

ψ ψ π

τ τ π π

,

,

= /

= ,

∑

∑

π ,

 

( ) cos( )sin
2N ij

i j

xs s t i j zπ π
,

= .∑  

 
Here the summing over all pares (i,j) of integer non-
negative numbers with even sum i j , and 

 is done. The length of the period 
along $x$ axis  corresponds to the length of the wave, 
for which the static solution loses stability with 
minimal Rayleigh number, is . For 

 we have an approximation of the solution with 
two space harmonics.  

2n+ =
2

/

2 2 (2 )i j N+ ≤

427 4TR π=
1N =

 
Corresponding dynamic systems (accordingly to the 
terminology of the authors [4]) belong to the systems 
of the hydrodynamic  type possessing the property of 
decreasing of the phase volume with time growth. 
 
2.2 Evaluation of the convergence of Boubnov-
Galerkin approximation. 
 
 
For the evaluation of the convergence of the solutions 
of the system, where functions ij ij ijsψ τ, ,  satisfy the 
systems of the hydrodynamic type, for the solutions of 
the original system let us introduce an energetic norm 
of the solution ( )E t , which is proportional to kinetic 
energy of the 
liquid of a cell of periodicity 0 1 0 1 2z x< < ; < < / . 
For the approximation with  space harmonics we 
have the following approximate expression for 

2N
( )E t : 

2
2 2 2 2( ) ( )( ) (2 )

2N ij
i j

iE t t j i j Nψ
,

= + , + ≤∑ 2.  

 
For the evaluation of the convergence in Sobolev 
space 1

2W E D= < > + < >  (symbol <> means 
time average along fixed trajectory of dynamic 
system) the norm, which is proportional to the rate of 
viscous dissipation of the energy is useful: 

2
2 2 2 2 2( ) ( )( ) (2 )

2N ij
i j

iD t t j i j Nψ
,

2= + ; + ≤∑ .  

 
 
3 Investigation of properties of the 
solution 
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Fig.1 

In figure 1 stochastic regimes for moderate 
supercriticality are demonstrated using Nusselt 
number (that is flow of temperature through the 
surface). This figure and figure 2 for higher 
supercriticality are given here to provide insight for 
what kind of chaotic motion we will present pictures 
of attractors. 

 
Fig.2 

One of the most important characteristics of turbulent 
motions and fundamental notion in dynamical systems 
is sensitivity on the initial values.  Figure 3 shows haw 
two close trajectories diverge in stochastic regime 
(actually tow close trajectories on the attractor). 
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Fig.3 
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Fig.4 

 
Method of Bubnov-Galerkin has a very agreeable 
benefit over finite element method for this type of 
problems. We can estimate relative residual of the 
initial model after the substitution of the numerical 
solution. For finite elements method this is not easy 
because we must calculate time derivatives for 
evaluation of the residual. In figure 4  you can see the 
dependency of the residual on the number of 
harmonics. 
 
Figures 5 and 6 give insight on the structure of the 
attractor. By investigation of the transversal section 
we saw that it always has structure of Mobius band. 
(Attractor of cause is not exactly two-dimensional and 
can have only fractal dimension) With the growth of 
Rayleigh number after loosing of stability of stationary 
motion limit cycle appears. Then, with further increase 
of supercriticality, periodical motion loses stability. 
 
The projection of limit cycle on plane  11 11(

circle up to values of parameter . For this 
value of parameter  bifurcation of period doubling 
of limit cycle takes place. The cascade of bifurcations 
can be understood better with the help of succession 
mapping (mapping of Poincare). Let us transversally 
(locally) intersect the limit cycle by hyperplane and 
points of intersection denote . For 
the small perturbations of the dynamic system around 
the limit cycle we will get linear system with periodic 
coefficients. Accordingly to the Floquet theorem  there 
exist a linear substitution of variables with periodic 
matrix which reduces the system with periodic 
coefficients to the system of linear equations with 
constant coefficients. Roots of corresponding 
characteristic equation will be eigenvalues 
(multiplicators) of the matrix of monodromy of system 
with periodic coefficients. If all the multiplicators are 
different and less than one in absolute value, then limit 
cycle is stable. If one of the multiplicators with the 
parameter growth  traverses -1, then locally 
monodromy transformation in transversal plane  
(using the possibility of linear transformation of 
parameter and variable 

8870TR =

TR

1 2jM j, = , , ...

x ) may be represented as 
follows  2 3

1 (1 )j j j jx x x xλ β+ = − + + + .  
For 0λ <  mapping of succession converges to zero, 
corresponding to stable limit cycle. For 0λ >  
sequence converges to cycle of two points 

1 2 (1 )x λ β, = ± / + . So for 0λ >  stable limit cycle 
of doubled period appears.  
 

 
Fig. 5 

)ψ τ,  
appears to be closed no self-intersected  curve, 
diffeomorphic to 

Figure 7 represents Poincare map after  two 
bifurcations of period doubling. In figure 8 we have 
Poincare map for stochastic regime. In [5] you can 
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find more details on sequence of bifurcations. With the 
further increase of RT  the reverse process begins, the 
Mobius band is cut along itself (by cutting the Mobius 
band we again obtain the Mobius band due to non-
orientability of the surface). Finally we arrive to 
periodic solution. Appearance of periodic solutions is 
close to the assertion of the Schakowsky theorem (see 
the discussion in [6]). After loosing of stability of this 
periodic solution new sequence of bifurcations begins 
which again leads to attractor in the form of Mobius 
band, but this time Poincare map can’t be represented 
in the form of a one-valued function and has many 
minima and self-intersection, so beautiful theory of 
Feigebaum [7] can’t be applicable any more. 
 

 
Fig. 6 
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Fig. 7 
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Fig. 8 

 
Fig. 9 
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Fig. 10 
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Fig. 11 Poincare section in projection to the plane 
(x,y) where x and y are direction with the greatest 
scattering of points. Figure 12 corresponds to this 
section. 
 

 
Fig. 12 

Figure 12 shows Poincare map  for higher 
supercriticality. From the first glance it may appear 
that here there is no structure, just a cloud of points. 
But more accurate consideration with higher number 
of points allows to see that the structure of Poincare 
map remains one-dimensional. 
 
4 Conclusion 
 
Structure and development of attractors for double-
diffusive convection were demonstrated. Attractor has 
the form of a Mobius band. Positive Liapunov 
exponent on the attractors was demonstrated. 
Modifications of Poincare map with the growth of 
supercriticality were shown. The convergence of 
Bubnov-Galerkin method was demonstrated in norms 
of kinetic energy and dissipation function. 

Dependence of relative residual on the number of 
harmonics was shown. So the described properties of 
the solution adequately correspond to the initial model 
of double-diffusive convection. 
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