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Abstract: - This paper presents a self tuning control algorithm for mechanical systems with friction. 
Mainly it applies the results of the identification procedures based on distributions theory to 
continuous time systems with friction. The tuning algorithm performs two actions: compensates the 
friction force and adapts the parameters of a linear controller. There are defined the so called 
generalized friction dynamic systems (GFDS) as a closed loop structure around a smooth system with 
discontinuous feedback loops representing friction reaction vectors. Only GFDS with static friction 
models (SFM) are c considered in self tuning process. The proposed method is a batch on-line 
identification and tuning method because identification results are obtained during the system 
evolution after some time intervals but not in any time moment. The advantages of representing 
information by distributions are pointed out when special evolutions as sliding mode, or limit cycle 
can appear. Some experimental results are presented to illuminate its advantages and practical use. 
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1  Introduction 
There are many mechanical systems, from 
machine tool positioning to tracking in 
navigation, where the so-called friction forces 
influence the motion. Friction models contain 
some specific nonlinearity such as stiction, 
hysteretic, Stribeck effect, stick-slip, depending 
on velocity [1], [2], [3], [4]. The values of model 
parameters can change during the system 
evolution or are influenced by some other causes 
as external temperature, quality of materials etc. 
A large variety of friction models, as Coulomb 
friction model, Dahl model [5], [6], exponential 
model [7], bristle model [8], state variable model 
[9], there are accepted in literature [1]. 
Ignoring friction in controlling such systems can 
lead to tracking errors, limit cycles, undesired 
stick-slip motion [2]. To avoid these difficulties, 
adaptive control strategies, named model-based 
friction compensation techniques [2], are 
recommended. Such adaptive strategies involve 
identification procedures of the controlled 
system, including identification of the model 
friction parameters. 
Unfortunately friction models are nonlinear, 
involving a discontinuous dependence with 

respect to velocity. Because of this, many 
techniques, as identification based on time-
discretized models fail to offer good results. 
A survey of models, analysis tools and 
compensation methods for the control of 
machines with friction is presented in [11]. A 
distribution-based approach of mechanical 
systems with friction identification is developed 
in [12]. This extends the results on continuous 
time system identification based on distribution 
theory, reported in [13], for linear systems, or in 
[14], for nonlinear systems. To perform 
continuous time domain identification the system 
differential equations is transformed to an 
algebraic system that reveals the unknown 
parameters, [15]. This can be done also by using 
some modulating functions to generate 
functionals to avoid the direct computation of the 
input-output data derivatives [16], [17], [18].  
This paper presents a self-tuning control structure 
for both the fric tion compensation as an 
additional input correction signal and the 
controller parameters. Through this, is intended 
to demonstrate the effectiveness of the 
distribution based identification technique from 
[12], for friction mechanical systems. As the 
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ident ification results are obtained during the 
system evolution after some time intervals but 
not in any time moment, proposed self-tuning 
method is a batch on- line.  
The paper is organized as follows: After 
introduction in the first section, Section 2 
presents the structure of the proposed self-tuning 
control system. Section 3 is dedicated to the 
generalized friction dynamic systems GFDS, as 
presented in [12]. Section 4, presents the main 
steps the of continuous time system identification 
based on distributions. In section 5 the tuning 
strategy is presented. Section 6 illustrates 
applications of the identification methods for 
different types of systems with frictions and 
results of the proposed self tuning control 
structure. Conclusions are resumed in Section 7. 
 
 
2 Self-tuning control system structure 
Figure 1 presents the structure of the proposed 
self tuning control system for friction mechanical 
system. 
 
 
 
 
 
 
 
 
 
Figure 1, Self tuning control system structure.  
 
The mechanical system with friction, as a 
controlled plant, called "Plant with friction" (PF), 
has a manipulated variable u  and y as feedback 
variable for the closed loop system. Some other 
variables, denoted iy , are utilized for 
ident ification purposes. The set point is dy  and 
the command variable, delivered by the  
"Controller" (CO), is cy . A block, "System 
identification" (SI), receives the pair iu , y , as 
measured signals, and realizes the identified 
parameters θ

)
, the identification status is  and 

additional variables, fy  necessary for the 
"Friction compensation" (FC) block. The output  
of FC, the estimated friction forces F

)
, is applied 

to PF as correction signals. The block "Controller 
tuning" (CT) adjusts some of the CO parameters, 
depending on the pair i,sθ

)
. All blocks SI, FC, 

CT incorporate also complex monitoring and 
decision functions. 
 
 
3 Generalized Friction Dynamic 
Systems 
As presented in [12], a generalized dynamic 
friction system (GFDS) is a system characterized 
by the state equation of the form 

1 i px f(x,u,r,.. ,r,. . ,r )=&   (1) 
where x , is the state vector and u  is the input 
vector. The vectors ir  are called friction reaction 
vectors. They depend on x  and u through a 
specific operator i{}Ψ , called friction operator, 

i 1ir {x,u}, i : p= Ψ =   (2) 
There are two categories of friction models: static 
friction models (SFM) and dynamic friction 
models.(DFM). For SFM, we deal with only in 
this paper, the operator (2) is a non-dynamic 
mapping with a specific structure as follows. For 
any 1i : p= ,there are two functions iiv ( x , u )= ν , 
which determines the so called generalized 
velocity vector iv , and iia ( x , u )= α ,expressing 
the so called active component of the velocity 
vector iv . In SFM, the non dynamic mapping (2) 
can be expressed as a function of iv , and ia only, 
as depicted in Figure 2, iir F { x , u }= . 
 
 
 
 
 
 
 
 
 
 
Fig. 2, The feedback structure of a GDFS with SFM.  
 
Inspired from mechanics [11], the function iρ  is 
explicitly defined for 0iv =  and for 0iv ≠ . As a 
result, two components of the friction reaction 
vectors 1ir ,i : p=  can be defined: static friction 
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reaction s
ir  and cinematic friction reaction c

ir , 

where, particularly, s c
i i ir r r= + , 

0 0 0s s s
i i i i i i ir ( v , a ) , v ; r ,v= ρ = = ≠ ;  (3) 

0 0 0c c c
i i i i i i ir ( v , a ),v ; r ,v= ρ ≠ = =  (4) 

The adjective static and dynamic, for the friction 
reaction vectors 1ir , i : p= , must be understood 
with respect to the velocity vector iv only. Also, 

for a vector im 1iv ,i : p∈ =R , it is defined the 

function isgn(v )  as i i isgn(v ) v / v= ,where iv  

is the Euclidian norm of imR . In this norm the 
function isgn(v ) is a discontinuous function in 
the point 0iv = . It is observed that  

1 0 0 0i i isgn(v ) sgn( v ) , v ,sgn( )= = ≠ =  (5) 

If 1im = , iv is a scalar variable, then (12) can be 
presented by using inequalities. Because of (3) 
and (4), the system state vector evolution x ( t )  is 
characterized by a status of two values, related to 
each friction reaction vectors 1ir , i : p= , 
1. Evolution inside a surface characterized by 
zero value of the velocity vector iv , iSx ( t )∈ , 
where iS 0 0i i{ x , v } { x , ( x ) }= ∈ = = ∈ ν =X X . 
2. Evolution with nonzero value of the velocity 
vector iv , that means outside the surface iS , 

iSx ( t )∉ . 
Outside the surface iS , ir  is a vector opposite to 

0iv ≠  but inside the surface iS , ir  is a vector 
opposite to ia . There is a closed subset 

0S Si i( u ) ⊆ , called sticky area (SA), which keeps 
the system state inside . This means  

0
i0 STd d

i idt dxv(x( t ) ) [ v ( x ) ] x(t) , x ( u )= ⋅ = ∀ ∈& . (6) 
Inside the SA i ir a= − . Because the input u  can 
change the SA position the state x  can be forced 
to be out of 0Si ( u ) , crossing its border. For any 
admissible u, the function i ir F ( x , u )= is 

continuous with respect to 0
iSx ( u )∀ ∈ . Because 

of this, when the system state x ( t )  arrives on or 
leaves out 0

iS ( u )  the friction reaction ir ( t ) is a 
continuous time function. Condition c, is called 
the smooth sticky condition (SSC). However, 
when 0

i ix(t) S S\ ( u )∈ , ir ( t )has a discontinuity 

and 0d
idt v(x ( t ) ) ≠ . In this case x ( t )passes from 

one side to other of 0
i iS S\ ( u ), as a switching 

mode or as a sliding mode. For example, 
expressions as (7) and (8) of (3) and (4) 
respectively, satisfy the above  conditions, where 
by ia it must understand i ia a ( x , u )= , 

1s s
i i i i i i i ir (v,a) max{Q, a } sgn(a ) [ sgn( v )]=ρ =− ⋅ ⋅ −  (7) 

1i ivc c
i i i i i vi i i ir (v,a) [Q K v B (e )] sgn(v )β⋅=ρ =− + ⋅ + ⋅ − ⋅  (8) 

As it can be observed, the cinematic reaction c
ir is 

a sum of three components, cc cv cs
i i ir ,r ,r  

expressing respectively Coulomb friction, 
viscous friction and the so called Stribeck effect, 
[4], [11],  

c cc cv cs
i i i ir r r r= + + .  (9) 

For 1im = , all i i ir ,a , v are scalar variables so the 

static reaction (7), s
ir , is illustrated in Fig. 3.a. 

and the cinematic reaction (8), c
ir , in Fig. .b. 

 
 
 
 
 
 
 
 
Fig.3, Static and cinematic components of a scalar friction 
reaction. 

A friction reaction vector ir , as above defined, 
has a sticky characteristic which means there is a 
subset S

iS Si( u ) ⊆ , called sticky set (SS), such  
S
i0 S Si i iv ( t ) d/dt{v(x(t))} , x(t) (u(t))= = ∀ ∈ ⊆& (10) 

The position of SS depends on input vector u . 
When the system state x ( t )  approaches S

iS ( u ) , 
generated by a vector ir , it remains inside of that 
SS till the input u ( t )  changes the position of 

S
iS ( u ) , forcing x ( t )  to be outside of it. 

Substituting (4) into (1) and denoting 
 1 1 i p(x,u) f(x,u,F(x,u),..,F(x,u),..,F(x,u))=f (11) 
the GDFS takes the compact form 

0 0 0x (x ,u ) , x ( t ) x ,t t= = ≥f& . (12) 
This is a differential system with a discontinuous 
function on right side so for its analytical 
description, special mathematical approaches are 
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necessary. For example approaches describing 
the solution in the Charatheodory sense [4], using 
the Filippov approach  , or differential inclusions 
and differential inequalities  . However, for the 
identification it is supposed a solution exist for 
(28) and are available as measurements the input 
variable u  and the output variable y where 
y h( x , u )= .  (13) 
 
 
4 Identification Based on Distributions 
of a Friction Mechanical System  
To combine the elements of GFS with the theory 
of identification based on distributions, as 
presented in [12], let us consider the simplest 
system with a single friction, as in Fig.  3. It is, 
represented by a mass m  attached to a spring 
with stiffness pK , moving on a horizontal 
surface. The end of the spring is a fixed point. A 
horizontal force u  acts on the mass.  
 
 
 
 
 
 
 
Fig.4, Principle diagram of the friction mechanical system. 
 

Outside 0S ( u ) , the system can be described by 

1| |
v pm K K Q sgn( ) B (e )sgn( ) u−βξ⋅ξ+ ⋅ξ+ ⋅ξ+ ⋅ ξ + ⋅ − ξ =&&& & & &  (14) 

except a set of points of a zero measure. A state 
equations can be determined considering 

1 2
T Tx [ x x ] [ ]= = ξ ξ& .Five parameters 

v p[m;K;K;Q;B]θ=  are simultaneously identified. 
Their identified values are denoted 

v p[m;K;K ;Q;B]θ=
) )) ) ))

 respectively. The distributions 
involved in identification [12], are expressed by 

1 6i := , integrals of the form  
k
b

ki a

t k
w k it

F ( ) (t)dtϕ = ψ∫ , for 1k : N=   (15) 

on the testing intervals k k
k a bT [ t ,t ] T= ⊆ , where, 

1
k

k( t ) ( t ) ( t )ψ = ξ ⋅ϕ&& ; 2
k

k( t ) ( t ) ( t )ψ =−ξ ⋅ϕ& ; 

3
k

k( t ) ( t ) ( t )ψ = ξ ⋅ϕ ; 
4
k

k( t ) sgn( ( t ) ) ( t )ψ = ξ ⋅ ϕ& ; 

5 1k | ( t ) |
k( t ) [( e ) ] s g n ( ( t ) ) ] ( t )β ⋅ ξψ = − + ξ ⋅ ϕ& & ; (16) 

6
k

k( t ) u ( t ) ( t )ψ = ⋅ϕ .  

The testing functions k ( t )ϕ  are of the form 
k k k k

k k k a b k a b( t ) ( t ,t ) (t,t ,t )ϕ = α ⋅β ⋅Ψ  (17) 

0

kn k k k
k k b b a k
a b k k

a b

sin [ (t t ) / ( t t )], k,n n
(t,t ,t )

, t ( ,t ] [t , )

 π⋅ − − ∀ ≥
Ψ =

∀ ∈ −∞ ∪ ∞
where iα  is a scaling factor and iβ normalizes the 

area 1
k
b

k
a

tk k k k k k
k a b k a b a bt
( t ,t ) / ( t , t ,t ) , t tβ = Ψ ∀ <∫ . 

Based on these integrals, an algebraic equation, 

w v⋅ θ =F F   
is built, where wF  is an ( 5N × ) matrix of real 
numbers 1

T T T T
w w w k w N[F ( );..;F ( );..;F ( )]= ϕ ϕ ϕF  where 

k-the row is
1 5i

T
w k w k w k w kF ( ) [F( ),...,F ( ),...,F ( )]ϕ = ϕ ϕ ϕ . 

vF is a vector  

6 6 61
T

v w w k w N[F ( ),...,F ( ),...,F ( )]= ϕ ϕ ϕF . 

The identified parameter vector θ
)

 is given by 
1T T

w w w v( )−θ = ⋅ ⋅ ⋅F F F F
)

.  (18) 
 
 
5 Self Tuning Control System  
The proposed control structure, depicted in Fig.1, 
considers the PF from Fig.4, and a PI controller 
with a transfer function 

1R R i iH ( s ) K / T (T s )= ⋅ ⋅ + .  
As mentioned, blocks SI, FC and CT contain 
complex monitoring and decision functions, not 
revealed in this paper. 
There are two variants for FC: Direct friction 
compensation and Observer based compensation. 
In the first variant the friction force is reconstruct 
by an algebraic relation, 

1| |F Q sgn( ) B (e )sgn( )− β ξ= ⋅ ξ + ⋅ − ξ&)) )& &  (19) 
considering the parameter β  off- line determined.  

The compensating force F
)

 depends on the 
identified parameters Q;B

) )
 and the both position 

ξ  and the speed ξ& . 
In the second variant, the observer's parameters 
are tuned based on whole identified parameter θ

)
. 

The linear term vK ⋅ ξ&  is not considered in 
compensation process. The controller parameters 

R iK ;T  are tuned to assure a desired closed loop 
behavior of the friction compensated system. 
When a tuning decision is taken the new values 
of parameters are changed by a recursive relation,  

u  
m  

r−  

ξ  0  

pK  
pK ⋅ ξ  
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6  Experimental Results 
Because of limited space in this paper, only one 
example is analyzed, based [12]. In the first 
example, the measured signals, as indicated in 
Fig.5., are generated by a step input 

2u ( t ) ( t )= ⋅1 with initial state and x(0)=[1 2]  

considering B=0 and m, Kv , Kp, Q as parameters 
for identification. Four testing functions kϕ on Tk , 

as (17), with nk=4 and T1=[0,3];T2=[3,6 ]; T3=[6,9]; 
T4=[9,12 ] are utilized. 
 
 
 
 
 
Fig. 5. Measured variables for the friction system without 
Stribeck effect and initial state x(0)=[1 2] 
 
The real and identified parameter values are 
respectively 
m:  5.00   4.99804  Kp:  4.00  3.99776 
Kv: 0.50   0.50843   Q:  1.00  .99648, 
and the conditioning number of Fw, 
cond(Fw)=12.3548. For the same input but with 
x(0)=[2 6] and T1=[0,5]; T2=[5,10]; T3=[10,15]; 
T4=[15,20]; cond(Fw)=11.6314, the identification 
results are m:  5.00   4.99793    Kp  : 4.00   3.99857 Kv: 
0.50   0.499711      Q:  1.00  0.99918. 
The third example refers to the same conditions  
but considering errors in the measurement of 
both input and output. A zoom of these 
measurements containing error is shown in Fig,6. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. A zoom representation of measurements containing 
error for the friction system without Stribeck effect and 
initial state x(0)=[2  6] 
 
Using these noise contamined measurements, the 
matrix Fw  is still well conditioned, cond(Fw)=11.7178., 
with the results  
m:   5.00   4.99634     Kp:   4.00   4.00747 
Kv:  0.50   0.51198     Q:    1.00   0.97137 
If the Coulomb friction parameter Q=1 changed 
to Q=2, the proposed algorithm gives the new 

identification results  
m:   5.00   5.00496        Kp:   4.00   4.00367 
Kv:  0.50   0.49554        Q:    2.00   2.01137 
having cond(Fw)=48.7245.  In the last presented 
example, the Stribeck effect is considered, with 

10β =  and coefficient B, that has to be identified, 
together the other previous four parameters.  
A step input 2u ( t ) ( t )= ⋅1  is applied from initial 
state x(0)=[2 6]  considering B=0.75  and five testing 
functions on T1=[0,5]; T2=[5,10]; T3=[10,15]; 
T4=[15,20]; T5=[20,25]; The results are  
m:    5.00   4.99999      Kp:   0.50   0.50000 
Kv:   0.50   0.50000      Q:    1.00   0.99997 
B:    0.75   0.74997 
To point out the Stribeck effect, the Fig. 7 shows 
the ramp response of this system. 
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Fig. 7. The ramp response of system with Stribeck effect. 
 
Figures 8,9,10 and 11 present the step response 
of the closed loop system with and without self 
tuning facility for different parameters. 
 
m=5; Kp=0.5; Kv=5; Q=6; B=2; bet=10; KR=3; Ti=3 

 
 
 
 
 
 
 
 
Fig. 8. The step response of the closed loop system with steady 
state error. 
 
m=5; Kp=0.5; Kv=0.5; Q=1; B=0.75; bet=10; KR=0.025; Ti=5 

 
 
 
 
 
 
 
Fig. 9. The step response of the closed loop system with sticky 
regime. 

Sticky evolution 

t2 
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Fig. 10. The step response of the closed loop system with respect 
to the speed. 
 
m=5; Kp=0.5; Kv=0.5; Q=1; B=0.75; bet=10; KR=0.025; Ti=5 

 
 
 
 
 
 
Fig. 10. The manipulated variable evolution for the step response 
of the closed loop system . 
 
 
6  Conclusion 
The above results illustrate the advantages of 
distribution-based identification for self-tuning 
friction systems control. Description by 
functionals allows enlarging the area of systems 
to which identification and control procedures 
can be applied. 
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